

Übungsblatt H-1

Hausaufgabe Besprechung und Abgabe 17. April 2019, in der Vorlesung

Aufgabe 1 (Wdh)

Finden Sie Beispiele für

- a) einen metrischen Raum mit einer offenen und abgeschlossenen (echten) Teilmenge.
- b) einen metrischen Raum mit einer (echten) Teilmenge, die weder offen noch abgeschlossen ist.

Aufgabe 2 (Metriken)

Auf \mathbb{R}^2 definiere zwei Metriken durch folgende Berechnung des Abstands zweier Punkte $p_1=(x_1,y_1)$ und $p_2=(x_2,y_2)$ aus \mathbb{R}^2 : Sei $d_1(p_1,p_2)=|x_1-x_2|+|y_1-y_2|$ die Manhattan Metrik und $d_{\infty}(p_1,p_2)=\max\{|x_1-x_2|,|y_1-y_2|\}$ die Maximumsmetrik. Zeigen Sie, dass die beiden metrischen Räume (\mathbb{R}^2,d_1) und $(\mathbb{R}^2,d_{\infty})$ isometrisch sind.

Aufgabe 3 (Isometrische Einbettungen)

Finden Sie ein Beispiel für einen metrischen Raum (X, d) und eine isometrische Einbettung $f: X \to X$, die keine Isometrie ist.

Aufgabe 4 (Isometrien)

Ist (X, d) kompakter metrischer Raum und $f: X \to X$ eine isometrische Einbettung, dann ist f eine Isometrie.

Stimmt die Aussage auch für vollständige metrische Räume? Für lokal kompakte metrische Räume?

Aufgabe 5 (Fixpunktsatz)

Sei (X, d) ein vollständiger metrischer Raum und $f: X \to X$ eine kontrahierende Abbildung, d.h. für eine $0 < \lambda < 1$ gilt, dass $d(f(x), f(y)) \le \lambda d(x, y)$ für alle $x, y \in X$. Zeigen Sie, dass es dann einen eindeutigen Punkt p in X gibt mit f(p) = p.