

Übungsblatt 1

21. Oktober 2019

Gruppen und Symmetrien, Struktur von Gruppen

Präsenzaufgaben (zur Bearbeitung in der Übungsgruppe)

Aufgabe P1

Sei G eine Gruppe. Zeige, dass eine nicht-leere Teilmenge $H \subset G$ genau dann eine Untergruppe von G ist, wenn folgendes gilt: $ab^{-1} \in H$ für alle $a, b \in H$.

Aufgabe P2

- a) Wie viele Symmetrien besitzt der Würfel insgesamt? (incl. Spiegelungen)
- **b)** Zeige, dass die Tetraedergruppe eine Untergruppe der vollen Symmetriegruppe des Würfels ist.

Aufgabe P3

Sei \mathbb{K} ein Körper. Betrachte die folgenden Matrizengruppen (mit Gruppenoperation gegeben durch Matrixmultiplikation).

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{K}, ac \neq 0 \right\} \text{ und } N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{K} \right\}.$$

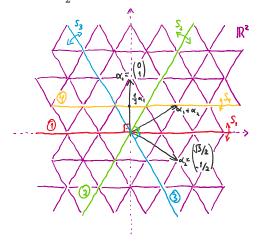
Zeige:

- a) N ist ein Normalteiler in G.
- **b)** G ist ein semi-direktes Produkt mit Normalteiler N und Quotient $\{\begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \mid a, c \in \mathbb{K}, ac \neq 0\}.$

Hausaufgaben (Geben Sie Ihre Lösung spätestens zum Anfang des nächsten Tutoriums ab.)

Aufgabe H1

Betrachte die folgende (unendliche) Parkettierung der Ebene durch gleichseitige Dreiecken der Höhe $\frac{1}{2}$.



Auch gegeben sind die Vektoren $\alpha_1 = (0, 1), \ \alpha_2 = (\frac{\sqrt{3}}{2}, \frac{1}{2})$ sowie vier Spiegelungen, nämlich S_1, S_2, S_3 und S_4 , jeweils um die Geraden ①, ②, ③ und ④.

(Bemerkung: Die Geraden ①, ② und ③ schneiden sich im Ursprung (0,0) und ④ ist die affine Gerade $y=\frac{1}{2}$.)

- a) Was ist die Gruppe W erzeugt von den Spiegelungen S_1 , S_2 und S_3 ? Fassen Sie diese Gruppe mithilfe linearer Algebra als Spiegelungsgruppe auf. (D.h. beschreiben Sie S_1 , S_2 und S_3 als Matrizen.) Tipp: In einem Vektorraum ist die Spiegelung S_{α} um eine Hyperebene α^{\perp} gegeben
 - <u>Tipp:</u> In einem Vektorraum ist die Spiegelung S_{α} um eine Hyperebene α^{\perp} gegeben durch die Formel $S_{\alpha}(v) = v 2\frac{\langle \alpha, v \rangle}{\langle \alpha, \alpha \rangle}\alpha$.
- b) Leiten Sie auch eine Formel für die Spiegelung S_4 her. <u>Tipp:</u> S_4 ist nicht mehr linear wie S_1 , S_2 und S_3 , ist aber immer noch eine Isometrie der Ebene, d.h. $S_4(v)$ ist der Form Mv + w für eine Matrix M und einen Vektor w.
- c) Betrachte die durch $(x,y) \mapsto (x,y,1)$ gegebene Einbettung $\mathbb{R}^2 \hookrightarrow \mathbb{R}^3$. (D.h. \mathbb{R}^2 wird auf die Ebene z=1 in \mathbb{R}^3 abgebildet.) Zeigen Sie, dass S_1, \ldots, S_4 sich jetzt als Elemente aus $\mathrm{GL}_3(\mathbb{R})$ beschreiben lassen.

 Tipp: Elemente der Form $\begin{pmatrix} a & b & u \\ c & d & v \\ 0 & 0 & 1 \end{pmatrix} \in \mathrm{GL}_3(\mathbb{R})$ lassen die eingebettete Ebene $\mathbb{R}^2 \cong \{z=1\}$ invariant. Welche Matrizen der gegebenen Gestalt bilden die Elemente $(x,y,1) \in \{z=1\}$ ab auf die entsprechenden Bilder von $(x,y) \in \mathbb{R}^2$ unter den
- d) Betrachte das Produkt $T = S_1 \cdot S_4$ (jetzt als Elemente aus $GL_3(\mathbb{R})$). Was macht die Konjugation von S_1 , S_2 und S_3 mit dem Element T? (D.h. wie sehen Elemente der Form $S_iTS_i^{-1}$ aus für i = 1, 2, 3?) Und was mit $S_iT^kS_i^{-1}$ mit $k \in \mathbb{Z}$?

ursprünglichen Transformationen S_1 , S_2 , S_3 und S_4 ?

e) Beweisen Sie, dass die Gruppe $\tilde{W} = \langle S_1, S_2, S_3, S_4 \rangle$ (als Untergruppe von $GL_3(\mathbb{R})$) ein semi-direktes Produkt ist mit Quotient W. Tipp: Aufgabe P3. Was ist hier der Kandidat für Normalteiler?