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While there is considerable work on change-point analysis in univariate time series,
more and more data being collected comes from high dimensional multivariate set-
tings, where the number of components is of the same order or even larger than
the number of time points. An appropriate asymptotic framework to investigate
statistical procedures for such data assumes that the number of components in-
creases to infinity with the number of time points. In this setup we would like
to investigate the properties of univariate tests after the data has been projected
onto a vector pd. To this end, we consider the following model:

Xi,t = µi + δi,T 1{t>⌊ϑT⌋} + ei,t, 1 ≤ i ≤ d = dT , 1 ≤ t ≤ T,

where (for simplicity) {(e1,t, . . . , ed,T )T , t = 1, . . . , T} is i.i.d. and 0 < ϑ < 1 is the
rescaled change-point. We call the vector ∆d = (δ1,T , . . . , δd,T )

T the change and
test

H0 : ∆d = 0, H1 : ∆d ̸= 0.

In this setting, it is apparent that the change∆d is always a one-dimensional object
no matter the number of components d. This observation suggests that knowledge
about where the change-point is located in addition to the underlying covariance
structure can significantly increase the signal-to-noise ratio. In applications, cer-
tain changes are either expected or of particular interest e.g. an economist looking
at the performance of several companies expecting changes caused by a recession
will have a good idea which companies will profit or lose. This knowledge can then
be used to increase the power in directions close to the search direction pd while
decreasing it for changes that are close to orthogonal to it.

In order to understand this informal statement better and to compare the power
behavior of different statistics, we consider contiguous changes, where ∥∆d∥ → 0
but with such a rate that the power of the corresponding test is strictly between
the size and one. We can then compare these contiguous rates to understand
the power of the test. Concerning a fixed projection pd it turns out that the
contiguous rate is given by

T ∥Σ−1/2∆d∥2 cos2(αΣ−1/2∆d,Σ1/2pd
),

where Σ is the covariance of the vector (e1,t, . . . , ed,T )
T and αa,b is the smallest an-

gle between the vectors a and b. From this it is obvious that the oracle projection
o = Σ−1∆d maximizes the contiguous rate. This can be compared to a random
projection on the unit sphere after standardizing the data, which is equivalent to
projecting with the vector rd,Σ = Σ−1/2rd, where rd is a random projection on
the unit sphere. Furthermore, we can compare the procedure with a generalization
of multivariate change-point procedures for independent components in the above
asymptotic framework proposed by Horváth and Hušková [2].
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Figure 1. Empirical
size-corrected power
for increasing angles,
Σ = Id
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Figure 2. Empirical
size for increasing con-
tamination by a com-
mon factor

The following table compares the contiguous rates in all three cases:

Contiguous Rate

Oracle projections T∥Σ−1/2∆d∥2
HH statistic (Σ = Id) T∥Σ−1/2∆d∥2/

√
d

Scaled random projection T∥Σ−1/2∆d∥2/d
(stochastic order)

It becomes apparent that we lose an order
√
d between the oracle and the HH

statistic as well as another order
√
d between the HH statistic and the scaled

random projection. Figure 1 confirms these theoretical findings and gives an im-
pression on how wide the angle between Σ−1/2∆d and Σ1/2pd can be before the
HH procedure is better than the projection. Please note, however, that the space
covering these angles increases for increasing dimensions.

Usually, in applications Σ is not known and needs to be estimated, which is
rather problematic particularly in high-dimensional settings without additional
parametric or sparsity assumptions. For change-point tests the inverse is needed
which results in additional numerical problems for large d. Consequently, it is of
importance to check the robustness of the procedures with respect to not knowing
Σ.

To this end, we first consider the size of the different procedures. For the pro-
jection procedures and a large class of dependency across components only the
variance of the projected sequence is needed, which is not difficult to estimate.
The HH procedure on the other hand strongly depends on the independence be-
tween components or after some possible extensions on the knowledge of Σ−1.
Consequently, it suffers sincere size problems if Σ is misspecified. In order to show
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po ∼ qo
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Figure 3. Empirical size-corrected power for increasing contam-
ination by a common factor, sj = 1

this effect we consider the situation where ei,t = siηi,t + Φξi, where ηi,t are in-
dependent and standardized and ξi is a common standardized disturbance factor
across all channels (independent of η). Figure 2 clearly shows that the projection
is much more robust with respect to size.

Considering contiguous rates again we can also investigate the robustness in
terms of the power of the different procedures. To this end, we consider the pre-
oracle po = ∆d as well as the quasi-oracle qo = (δ1/ var(e1,1), . . . , δd/ var(ed,1))

T .
If the Variances are all of the same order, i.e. 0 < c ≤ var(ei,1) ≤ C < ∞, then in
the uncorrelated case quasi- and pre-oracle are of the same order, in the general
case both of them are always at least as good as the unscaled random projection
rd but can be better, while the HH procedure is always of the same order as the
random projection. This fact is confirmed by the simulations in Figure 3.

In summary, projections can greatly increase the power of corresponding change-
point tests in high-dimensional settings particularly if the covariance structure is
accessible and some information about the location of the change of interest is
known. Additionally, such projections are much more robust with respect to both
size and power than competing fully multivariate procedures if the covariance
structure is misspecified.
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