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Abstract

In this seminar paper we study a decomposition method with respect to

dual cones, which was established by J. J. Moreau. Moreover, a couple of

explicit examples are presented, helping to observe a connection with obstacle

problems. In the last section we will give some well known results on this

problem.
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1 Abstract decomposition method

First we will repeat some basic results of linear functional analysis (see [1]), which

help to simplify the understanding of the decomposition of Moreau. In the following

we denote by H a real Hilbert space endowed with the scalar product 〈., .〉H.

Theorem 1 (projection theorem)

Let H be a Hilbert space and K a non-empty closed convex subset of H. Then there

exists for any x ∈ H a unique y ∈ K with

‖x− y‖ = inf
z∈K

‖x− z‖. (1)

Furthermore, for y the following characterization holds:

〈x− y, z − y〉H ≤ 0 ∀ z ∈ K. (2)

Proof: At first we show the existence of such a y.

We consider an arbitrary x ∈ H and define d := infz∈K ‖x− z‖.
Then there exists a sequence (zk)k∈N ⊂ K with:

‖x− zk‖ ց d, k → ∞ (3)

Since H is a Hilbert space and consequently the parallelogram identity

‖(x− zk) − (x− zl)‖2 + ‖(x− zk) + (x− zl)‖2 = 2(‖x− zk‖2 + ‖x− zl‖2)

is valid, we have

‖zk − zl‖2 = 2(‖x− zk‖2 + ‖x− zl‖2) − 4‖x− zk + zl
2

‖2.

Because of the convexity of K we also have zk+zl

2
∈ K and therefore ‖x − zk+zl

2
‖ ≥ d

holds. This and (3) yield

‖zk − zl‖2 ≤ 2(d2 + d2) + o(1) − 4d2 k,l→∞−−−−→ 0,

that means (zk)k∈N is a Cauchy sequence. Taking into account that H is complete

and K is closed, we can conclude that zk
k→∞−−−→ y with some suitable y ∈ K. That y

satisfies equation (1), follows from

d = lim
k→∞

‖x− zk‖ = ‖x− lim
k→∞

zk‖ = ‖x− y‖

proving the existence part.

We still have to prove uniqueness of y. Let y1 also satisfy equation (1). Then we have
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0 ≤ ‖y − y1‖2 = ‖(x− y1) − (x− y)‖2

= 2(‖x− y‖
︸ ︷︷ ︸

=d

2 + ‖x− y1‖
︸ ︷︷ ︸

=d

2) − 4‖ x− y − y1

2
︸ ︷︷ ︸

∈K

‖2

≤ 4d2 − 4d2 = 0.

that is ‖y − y1‖ = 0, giving y = y1.

In order to complete the proof, we have to verify the characterization (2) of y. Let y

satisfy equation (1).

We chose z ∈ K and α ∈ (0, 1) so that (1 − α)y + αz ∈ K holds. Then we obtain

‖x− y‖2 ≤ ‖x− (1 − α)y − αz‖2 = ‖x− y − α(z − y)‖2

= ‖x− y‖2 − 2α〈x− y, z − y〉H + α2‖z − y‖2

and consequently

2〈x− y, z − y〉H ≤ α2‖z − y‖2.

With α ց 0 it follows that inequality (2) fulfilled.

Now, we assume that inequality (2) holds. We obtain

‖x− z‖2 = ‖x− y + y − z‖2

= ‖x− y‖2 + 2 〈x− y, y − z〉H
︸ ︷︷ ︸

≥0

+‖y − z‖2

≥ ‖x− y‖2, ∀z ∈ K

showing that y minimizes the distance. So it satisfies equation (1). �

Remark: The above y specified by equation (1), is called the projection of x

upon K and will be denoted by y = projK x.

After presenting this important result, we will now continue with the geometrical

objects used in this paper.

Definition 2 (cone and dual cone)

(i) A set K ⊆ H is called a cone, if for all x ∈ K and all α ∈ R
+ also α ·x ∈ K holds.

(ii) Let K ⊆ H be a cone. Then the set K∗ := {x ∈ H| ∀y ∈ K : 〈x, y〉H ≤ 0} is

called the dual cone of K.

(iii) Let C,K ⊆ H be two cones. Then we say C and K are mutually dual, if both

K = C∗ and C = K∗ holds.

Theorem 3 Let K ⊂ H be a closed convex cone. Any x ∈ H can be decomposed in

the form

x = y + z with 〈z, y〉H = 0,

4



where y ∈ K and z ∈ K∗.

Proof: Let x ∈ H. Moreover, let y = projKx and z = x− y. Because of equation

(2) of Theorem 1

〈x− y, p− y〉H ≤ 0 (4)

holds for all p in K. If we now choose p = λy, λ ≥ 0, it follows that

(λ− 1)〈z, y〉K ≤ 0.

Since λ ≥ 0 is arbitrary, we have 〈z, y〉H = 0. This combined with (4) yields

〈z, p〉H ≤ 0, ∀ p ∈ K.

That is z ∈ K∗. �

The result yields further:

Proposition 4 Let K ⊂ H be a closed convex cone.

Then

K = K∗∗.

Proof: It is evident that K is a subset of K∗∗.

Let x ∈ K∗∗. Then, because of Theorem 3, there exist y ∈ K, z ∈ K∗ with x = y + z

and 〈y, z〉H = 0. From that we have

0 ≥ 〈x, z〉H = 〈y, z〉H + 〈z, z〉H = ‖z‖2.

With this we obtain ‖z‖2 = 0 meaning z = 0. This settles x = y and therefore

K∗∗ ⊂ K. �

Finishing preliminary work, we can now begin to deal with the actual topic: The

orthogonal decomposition with respect to dual cones proven by J.J.Moreau [2].

Proposition 5 (Moreau)

Let x, y, z ∈ H. Moreover, let K, C ⊆ H be two closed convex and mutually dual

cones. Then the following statements are equivalent:

(i) z = x+ y, with x ∈ K , y ∈ C and 〈x, y〉H = 0

(ii) x = projK z y = projC z

Proof: Let x, y, z ∈ H and satisfying (i). Since for y ∈ C and ∀ p ∈ K the

inequality

〈z − x, p− x〉H = 〈y, p− x〉H = 〈y, p〉H ≤ 0 holds,
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the characterization (2) of Theorem 1 is valid, that is x = projK z. Consider x ∈ K
and let q ∈ C. By the same procedure as above, we obtain:

〈z − y, q − y〉H = 〈x, q − y〉H = 〈x, q〉H ≤ 0,

which means y = projC z. Together this yields (ii).

The second step is according to proof of Theorem 3. �

Remark: Let M be a closed subspace of H. Since M is closed with respect to the

multiplication by scalars, the proposition above is a generalization of the orthogonal

decomposition with respect to M and M
⊥.

2 Some properties

In this section we want to show some important properties of the decomposition in

general and also for Sobolev spaces as some special Hilbert spaces.

Theorem 6 (Lipschitz continuity)

Let H be a Hilbert space, K ⊂ H a closed convex cone and K∗ its dual cone. Moreover,

let u, v ∈ H arbitrary with the corresponding Moreau decomposition u = u1 + u2, v =

v1 + v2 where u1, v1 ∈ K, u2, v2 ∈ K∗ and 〈u1, u2〉 = 0, 〈v1, v2〉 = 0.

Then we have that

‖u1 − v1‖2 + ‖u2 − v2‖2 ≤ ‖u− v‖2

In particular, the Moreau projection onto K is Lipschitz continuous with constant 1.

Proof: Because of the definition of the dual cone K∗,

〈u1, v2〉 ≤ 0 und 〈v1, u2〉 ≤ 0 hold

This inequality and the assumption of the theorem give

‖u− v‖2 = 〈u1 + u2 − v1 − v2, u1 + u2 − v1 − v2〉
= 〈(u1 − v1) + (u2 − v2), (u1 − v1) + (u2 − v2)〉
= ‖u1 − v1‖2 + ‖u2 − v2‖2 + 2〈u1 − v1, u2 − v2〉
= ‖u1 − v1‖2 + ‖u2 − v2‖2 + 2〈u1, u2〉 + 2〈v1, v2〉 − 2〈u1, v2〉 − 2〈v1, u2〉
= ‖u1 − v1‖2 + ‖u2 − v2‖2 − 2〈u1, v2〉 − 2〈v1, u2〉
≥ ‖u1 − v1‖2 + ‖u2 − v2‖2. �
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Now, let us look at the following special situation:

Let Ω = B ⊂ R
n be a ball centered at the origin and H = Hk

0 (Ω) the Hilbert space

equipped with the scalar product

〈u, v〉Hk
0

=







∫

Ω
(∆k/2u)(∆k/2v)dx, if k even

∫

Ω
(∇∆(k−1)/2u)(∇∆(k−1)/2v)dx, if k odd.

We consider the closed convex cone

K = {u ∈ Hk
0 (Ω)|u(x) ≥ 0 a.e.}.

It is easy to see that K is closed. Indeed, let u ∈ Hk
0 (Ω)\K. For this function there

exists a subset M ⊂ Ω with positive measure, such that u(x) < 0 for all x ∈ M . For

each v ∈ K we obtain

‖u− v‖Hk
0
(Ω) ≥

1

C
‖u− v‖L2(M) ≥ ‖u‖L2(M) > 0.

That means the complement of K is open, showing the closedness of K.

The dual cone K∗ in Hk
0 consists of all weak subsolutions of the polyharmonic

equation under Dirichlet boundary conditions, that is

K∗ = {v ∈ Hk
0 (Ω)|〈v, u〉Hk

0

≤ 0 ∀u ∈ K}.

In this case, we can show a further property of the dual cone K∗, related to differential

inequalities and comparison principles:

Lemma 7 Let v ∈ K∗, then v(x) ≤ 0 holds for a.e. x ∈ Ω, that is K∗ ⊂ −K.

Proof: Let v ∈ K∗ and f ∈ C∞
0 (Ω) ∩ K be an arbitrary function . Moreover, we

consider the following problem:






(−∆)ku = f in Ω

DKu = 0 on ∂Ω K = 0, ..., k − 1;

Because of the positivity of the Green function for the Dirichlet problem

Gk,n = ck,n|x− y|2k−n
∫ ||x|y−x/|x||/|x−y|

1

(v2 − 1)k−1v1−ndv, (5)

where ck,n > 0 is a well known constant, we have that u ∈ K. By this we obtain

0 ≥ 〈v, u〉Hk
0

=

∫

Ω

v(−∆)ku =

∫

Ω

vf.

Since the inequality holds for all f ∈ C∞
0 (Ω) ∩ K it follows by density that

∫
vf ≤ 0

for all f ∈ L2(Ω) such that f(x) ≥ 0 a.e.. This shows v(x) ≤ 0 a.e. and therefore

K∗ ⊂ −K. �

After having shown these two interesting properties, let us come to the main objective

of this paper:
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3 Explicit examples

Let us look at some explicit examples. In order to find out how the decomposition

works in special situations. Let H = H1
0 (−1, 1) be the given Hilbert space endowed

with the scalar product〈u, v〉H =
∫ 1

−1
u′(x)v′(x)dx. We want to decompose with

respect to the closed convex cone of nonnegative functions: K = {v ∈ H1
0 (−1, 1) :

v ≥ 0 a.e.}. The following example is taken from [3].

Example 8 At first, we will calculate the Moreau decomposition u = u1 + u2 of a

negative peak: Let ε ∈ (0, 1).

uε(x) =







|x|
ε
− 1, if |x| ≤ ε

0, else

−0.25

0.0

0.0

−0.75

−1.0

−0.5 0.5

x

1.0

−0.5

−1.0

Figure 1: A negative peak: u0.1(x)

Furthermore, let u2(x) = |x| − 1 and

u1(x) = uε(x) − u2(x) =







|x|
ε
− |x| , if |x| ≤ ε

1 − |x| , otherwise.

Consequently, we obtain the following illustration for uε(x):
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−0.5

y

0.0

1.00.5

−0.5

0.0

x

1.0

0.5

−1.0

−1.0

Figure 2: Moreau decomposition of u0.1(x)

To prove that u1 + u2 is the Moreau decomposition of uε with respect K and K∗

we have to show that the following conditions are fulfilled:

(α) u1 ∈ K , (β) 〈u2, ϕ〉H ≤ 0 ∀ ϕ ∈ K , (γ) 〈u2, u1〉H = 0. (6)

because of the definition of u1(x) (q.v.Fig.2) we obtain u1(x) ≥ 0 and hence u1 ∈ K.

For all ϕ ∈ K. We have

〈u2, ϕ〉H =

∫ 1

−1

u′2(x)ϕ
′(x)dx = −

∫ 0

−1

ϕ′(x)dx+

∫ 1

0

ϕ′(x)dx = −2ϕ(0) ≤ 0,

i.e. (β) and hence u2 ∈ K∗. By replacing ϕ by u1 with u1(0) = 0, we have (γ).

Together, uε = u1 + u2 is the Moreau decomposition. �

Proposition 9 The Moreau decomposition in H1
0 is not continuous with respect to

the L2-norm.

After this, we want to extend the example and consider two negative peaks instead

of one.

Example 10 Let ε ∈
(
0, 1

2

)
. Now we want to determine the decomposition for:

uε(x) =







−m(ε)x− n1(ε), if x ∈ (ε− 1,−1
2
)

m(ε)x+ n2(ε), if x ∈ [−1
2
,−ε)

−m(ε)x+ n2(ε), if x ∈ (ε, 1
2
)

m(ε)x− n1(ε), if x ∈ [1
2
, 1 − ε)

0, otherwise

(7)
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with m(ε) = 2
1−2ε

, n1(ε) = 2
(

1−ε
1−2ε

)
and n2(ε) = 2ε

1−2ε
.

x

0.5

0.0

0.0

−1.0

−0.5 1.0

−0.5

−0.25

−0.75

−1.0

Figure 3: Two negative peaks: u0.4(x)

We proceed as in the first Example 8. We claim that

u2(x) =







−2x− 2, if x ∈
(
−1,−1

2

)

−1, if |x| ≤ 1
2

2x− 2, if x ∈
(

1
2
, 1

)

u1 = uε − u2 =







2x+ 2, if x ∈ (−1, ε− 1)

−m1(ε)x− n2(ε), if x ∈
[
ε− 1,−1

2

)

m(ε)x+ n3(ε), if x ∈ [−1
2
,−ε)

1, if x ∈ [−ε, ε]
−m(ε)x+ n3(ε), if x ∈ (ε, 1

2
)

m1(ε)x− n2(ε), if x ∈ [1
2
, 1 − ε)

−2x+ 2, if x ∈ [1 − ε, 1)

, (8)

with the coefficient functions m1(ε) = 2ε ·m(ε), n3(ε) = m(ε)
2

and m(ε), n2(ε) defined

as in (7).

We have to prove that the conditions (α)-(γ) hold. By looking at equation (8) (or

fig.4), we see u1 ∈ K. Let ϕ ∈ K be arbitrary. We obtain

〈u2, ϕ〉H =

∫ 1

−1

u′2(x)ϕ
′(x)dx

= −2

∫ − 1

2

−1

ϕ′(x)dx+

∫ 1

2

− 1

2

0 · ϕ′(x)dx+ 2

∫ 1

1

2

ϕ′(x)dx

= −2

(

ϕ

(

−1

2

)

+ ϕ

(

−1

2

))

≤ 0.
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0.0

y

x

1.0

0.5−0.5

−1.0

1.5

0.0

0.5

−0.5

1.0−1.0

−1.5

Figure 4: Moreau decomposition of u0.4(x)

Hence u2 ∈ K∗. Now we replace ϕ by u1 and because of u1

(
±1

2

)
= 0 (γ) is valid.

That means u1 + u2 is the Moreau decomposition of uε. �

Before we continue to give further examples, let us take a closer look at the previous

ones. So far, the most important thing was to find a function u2. How can such a

function be determined?

We try to give a physical justification for the choice of u2. Let us assume the following

situation: Let be given a rubber band spanned between (-1,1). This leads to the

question how the position of the rubber band changes if we had given a negative

peak (see fig 2) stretching it downwards. We have seen in Example 8 that the above

defined function u2 is a solution to the problem.

Let us look at the following example with regard to this aspect.

Example 11 We calculate the decomposition for

uk(x) =







k2x2 − 1, if |x| ≤ 1
k

0, else
∀ k ∈ N.

Looking at Figures 5-6, under the above-mentioned aspect, we come to the conjecture

that

u2(x) =







−a(k)(x+ 1), if x ∈ (−1,−x0)

k2x2 − 1, if |x| ≤ x0

a(k)(x− 1), if x ∈ (x0, 1)

,
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with a(k) = 2k(k −
√
k2 − 1), x0 = 1 −

√

1 − 1
k2 and

u1(x) = uk − u2 =







a(k)(x+ 1), if x ∈ (−1,− 1
k
]

k2x2 + a(k)(x+ 1) − 1, if x ∈ ( 1
k
,−x0)

0, if |x| ≤ x0

k2x2 − a(k)(x− 1) − 1, if ∈ (x0,
1
k
)

−a(k)(x− 1), if x ∈ [ 1
k
, 1)

,

a(k) and x0 as above, are the functions we are looking for.

0.0

−1.0

0.5

−0.25

x

1.0

0.0

−0.5

−0.75

−0.5−1.0

Figure 5: uk=2(x)

For an arbitrary ϕ ∈ K, we obtain by integration by parts:

〈u2, ϕ〉H =

∫ 1

−1

u′2(x)ϕ
′(x)dx = −

∫ 1

−1

u′′2(x)ϕ(x)dx

= −





∫ −x0

−1

u′′2(x)
︸ ︷︷ ︸

≡0

ϕ(x)dx+

∫ x0

−x0

u′′2(x)ϕ(x)dx+

∫ 1

x0

u′′2(x)
︸ ︷︷ ︸

≡0

ϕ(x)dx





= −
∫ x0

−x0

u′′2(x)ϕ(x)dx = −2k2

∫ x0

−x0

ϕ(x)dx ≤ 0,

showing that u2 ∈ K∗. Obviously u1 ∈ K and since u1 ≡ 0 on [−x0, x0] we obtain after

substitution of ϕ, (γ) 〈u2, u1〉H = 0 . This yields: u1+u2 is the Moreau decomposition

of uk. �

Up to now we only considered negative functions and it is an interesting question to

study in more detail the influence of positive parts on the function u2. The following

examples show that the positive parts have no impact on the choice of u2, i.e. they

only influence the u1-part of the decomposition.
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0.2

1.0

−0.6
y

0.8

0.6

−0.8

0.4

0.0

−0.4

−0.2

−1.0

x

0.5 1.0−1.0 −0.5

0.0

Figure 6: Moreau decomposition of uk=2(x)

Example 12 Consider

uε(x) =







−m(ε)x− n1(ε), if x ∈ (ε− 1,−1
2
)

m(ε)x+ n2(ε), if x ∈ [−1
2
,−ε]

m(ε)x− n2(ε), if x ∈ (ε, 1
2
]

−m(ε)x+ n1(ε), if x ∈ (1
2
, 1 − ε)

0, otherwise

∀ ε ∈
(

0,
1

2

)

, (9)

−0.4

0.4

0.0

−0.8

0.5

1.0

0.8

−0.5

0.6

0.2

−0.2

−0.6

1.00.0

−1.0

−1.0

x

Figure 7: A positive and a negative peak: uε(x)
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Let the coefficient functions be defined as in Example 10. Furthermore, let

u2(x) =







−2x− 2, if x ∈ (−1,−1
2
)

2
3
(x− 1), if x ∈ (−1

2
, 1)

and

u1 = uε − u2 =







2x+ 2, if x ∈ (−1, ε− 1)

−m1(ε)x− n2(ε), if x ∈ [ε− 1,−1
2
)

m(ε)x+ n3(ε), if x ∈ [−1
2
,−ε)

−2
3
(x− 1), if x ∈ [−ε, ε]

(m(ε) − 2
3
)x− n2(ε) + 2

3
, if x ∈ (ε, 1

2
)

−(m(ε) + 2
3
)x+ n1(ε) + 2

3
, if x ∈ [1

2
, 1 − ε)

−2
3
(x− 1), if x ∈ [1 − ε, 1)

0.5

y

−0.5

0.0

−1.0

1.5

1.0

0.0

0.5

−0.5

−1.5

1.0

x

−1.0

Figure 8: Decomposition of uε(x)

It is clear that u1 ∈ K. As for (β): Let ϕ ∈ K be, then we obtain by integration by

parts

〈u2, ϕ〉H =

∫ 1

−1

u′2(x)ϕ
′(x)dx

= −2

∫ − 1

2

−1

ϕ′(x)dx+
2

3

∫ 1

− 1

2

ϕ′(x)dx

= −8

3
ϕ

(

−1

2

)

≤ 0,

which means that u2(x) ∈ K∗. With u1

(
−1

2

)
= 0 we have 〈u2, u1〉H = 0. This shows

that uε = u1 + u2 is the decomposition of uǫ(x). �

After illustrating several examples occurring in the Hilbert space H1
0 , we now give

two examples for the case u ∈ H2
0 .
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Example 13 Let H = H2
0 (−1, 1) be the Hilbert space equipped with the the scalar

product

〈u, v〉H =

∫ 1

−1

u′′(x)v′′(x)dx

We will decompose with respect to the cone:

K = {v ∈ H2
0 (−1, 1) : v ≥ 0 f..}.

Consider

u(x) =







256x6 − 144x4 + 24x2 − 1, if |x| ≤ 1
2

0, otherwise

0.25

0.0

−1.0

x

−0.5

0.5−0.5

−0.25

1.0

−0.75

0.0−1.0

Figure 9: u(x)

Moreover, let

u2(x) =







2x3 + 3x2 − 1, if x ∈ (−1, 0]

−2x3 + 3x2 − 1, if x ∈ (0, 1)

and

u1(x) = u(x) − u2(x) =







−2x3 − 3x2 + 1, if x ∈ (−1,−1
2
)

256x6 − 144x4 − 2x3 + 21x2, if x ∈ [−1
2
, 0]

256x6 − 144x4 + 2x3 + 21x2, if x ∈ (0, 1
2
]

2x3 − 3x2 + 1, if x ∈ (1
2
, 1)

.
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y

0.8

0.8

0.4

−0.4

−0.8

0.0

x

1.0

1.00.4

0.6

0.2

0.6

0.0

−0.2

−0.6

0.2

−1.0

−0.2−0.4−0.6−0.8−1.0

Figure 10: Moreau decomposition of u(x)

It is easy to see, that u1 ≥ 0 i.e. u1 ∈ K. To show that u2 ∈ K∗, we consider an

arbitrary ϕ ∈ K.We obtain, after integration by parts:

〈u2, ϕ〉H2

0
=

∫ 0

−1

u′′2(x)ϕ
′′(x)dx+

∫ 1

0

u′′2(x)ϕ
′′(x)dx

= u′′2(0)ϕ′(0) − u′′2(−1)ϕ′(−1) −
∫ 0

−1

u′′′2 (x)ϕ′(x)dx

+u′′2(1)ϕ′(1) − u′′2(0)ϕ′(0) −
∫ 1

0

u′′′2 (x)ϕ′(x)dx

= −12

∫ 0

−1

ϕ′(x)dx+ 12

∫ 1

0

ϕ′(x)dx = −24ϕ(0)

≤ 0,

i.e. u2 ∈ K∗. Now we replace ϕ by u1 and we conclude 〈u2, u1〉H = 0. This shows

that u = u1 + u2 is the Moreau decomposition. �

The physical interpretation agrees with the one given above, we have just replaced

the rubberband by an elastic bar clamped over the interval (-1,1). Having this in

mind we consider the following:

Example 14 We want to decompose in the Hilbert space H = H2
0 (−2, 2), endowed
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with the scalar product

〈u, v〉H =

∫ 2

−2

u′′(x)v′′(x)dx.

As above we consider the cone of the nonnegative functions :

K = {v ∈ H2
0 (−2, 2) : v ≥ 0 f..}.

Let

u(x) =







−16
25
x6 + 72

25
x4 − 81

25
x2, if |x| ≤ 3

2

0, sonst

be the given function.

x

2

−0.75

0−1

0.0

−0.25

−1.0

1

−0.5

−2

Figure 11: The function u(x) ∈ H2
0 (−2, 2)

Furthermore, Let

u2(x) =







4
5
x3 + 3x2 + 12

5
x− 4

5
, if x ∈ (−2,−1)

3
5
x2 − 8

5
, if |x| ≤ 1

−4
5
x3 + 3x2 − 12

5
x− 4

5
, if x ∈ (1, 2)

and therefore

u1(x) = u(x) − u2(x) =







−4
5
x3 − 3x2 − 12

5
x+ 4

5
, if x ∈ (−2,−3

2
)

−16
25
x6 + 72

25
x4 − 4

5
x3 − 156

25
x2 − 12

5
x+ 4

5
, if x ∈ [−3

2
,−1)

−16
25
x6 + 72

25
x4 − 96

25
x2 + 8

5
, if |x| ≤ 1

−16
25
x6 + 72

25
x4 + 4

5
x3 − 156

25
x2 + 12

5
x+ 4

5
, if x ∈ (1, 3

2
]

4
5
x3 − 3x2 + 12

5
x+ 4

5
, if x ∈ (3

2
, 2)

.
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1.6

1.0

0.8

−1.0

−1.6

x

2.0

1.5

0.5

1.2

0.0

−0.5

−1.5

0.40.0−0.4−1.2−2.0 −0.8

Figure 12: Moreau decompositon of u(x)

By looking at the figure or the definition of u1, we have that u1 ∈ K. Again it

remains to prove u2 ∈ K∗. To this end, let ϕ ∈ K be arbitrary. Then we obtain

〈u2, ϕ〉H2

0
=

∫ −1

−2

u′′2(x)ϕ
′′(x)dx+

∫ 1

−1

u′′2(x)ϕ
′′(x)dx+

∫ 2

1

u′′2(x)ϕ
′′(x)dx

= u′′2(−1)ϕ′(−1) − u′′2(−2)ϕ′(−2) −
∫ −1

−2

u′′′2 (x)ϕ′(x)dx

+u′′2(1)ϕ′(1) − u′′2(−1)ϕ′(−1) −
∫ 1

−1

u′′′2 (x)ϕ′(x)dx

+u′′2(2)ϕ′(2) − u′′2(1)ϕ′(1) −
∫ 2

1

u′′′2 (x)ϕ′(x)dx

= −24

5

∫ −1

−2

ϕ′(x)dx−
∫ 1

−1

0 · ϕ′(x)dx+
24

5

∫ 2

1

ϕ′(x)dx

= −24

5
(ϕ(−1) + ϕ(1)) ≤ 0,

proving u2 ∈ K∗. Because of u1 ∈ K with u1(±1) = 0 we have 〈u2, u1〉H = 0. All

this together means that u1 +u2 is the Moreau decomposition of u in the Hilbert space

H2
0 (−2, 2). �
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4 Connection with obstacle problems

Our aim now is to characterize the Moreau decomposition u = u1 + u2 for a given

function u ∈ H1
0 by means of a minimization problem. In this context, a variational

inequality for this problem shall be presented. Finally, we want to define the obstacle

problem, induced by the minimization problem, for general situations, and we will

give some fundamental results related to this topic. See also [5].

Let again be H = H1
0 ((α, β)), α, β ∈ R the Hilbert space equipped with the scalar

product

〈u, v〉H =

∫ β

α

u′(x)v′(x)dx

and let

K = {v ∈ H1
0 ((α, β)) : v ≥ 0 a.e.}

be the convex cone with respect to which we want to perform the decomposition.

As we have seen in Section 3, the computation of u2 and u1 resp., is equivalent to

the minimization problem:

Let u ∈ H be given. Find u1 ∈ K such that ‖u−u1‖H = ‖u2‖H is minimal under the

constraint that u2 ≤ u a.e. (with u2 ∈ K∗ ⊂ −K). Thus, we look for

u2 ∈ Ku := {v ∈ K∗ : v ≤ u a.e. } :

∫ β

α

|∇u2(x)|2dx = min! (10)

This type of minimization problem is called an obstacle problem, because the con-

straint u2 ≤ u a.e. constitutes an obstacle.

Lemma 15 The absolute minima u2 ∈ Ku in (10) are solutions to the following

variational inequality:

〈u2, v − u2〉H ≥ 0 ∀v ∈ Ku. (11)

Proof: Let u2 be an absolute minimum of v ∈ Ku. Since Ku is a convex subset of

H, the convex combination (1 − t)u2 + tv ∈ Ku (0 < t ≤ 1). Then we have

∫ β

α

|∇u2(x)|2dx ≤
∫ β

α

|∇((1 − t)u2(x) + tv(x))|2dx

=

∫ β

α

|∇u2(x) + t∇(v − u2)(x)|2dx

=

∫ β

α

|∇u2(x)|2 + 2t

∫ β

α

∇u2(x)∇(v − u2)(x)dx+ t2
∫ β

α

|∇(v − u2)(x)|2dx

After dividing by t and for tց 0 we obtain

0 ≤
∫ β

α

∇u2∇(v − u2)dx = 〈u2, v − u2〉H, ∀v ∈ Ku,
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i.e. the absolute minimum u2 satisfies the variational inequality. �

Next, we want to formulate a general obstacle problem.

Let Ω ⊂ R
n be bounded connected and having a smooth boundary. Moreover, let

aij ∈ L∞(Ω) satisfy

(1/Λ)ξ2 ≤ aij(x)ξiξj ≤ Λξ2 a.e. ξ ∈ R
n,

where Λ is an ellipticity constant. We define the mapping

L : H1
0 (Ω) → H−1(Ω) with 〈Lu, v〉 = a(u, v) u, v ∈ H1

0(Ω, )

where for the a(u, v) we have

a(u, v) =

∫

Ω

aij(x)uxj
(x)vxi

(x)dx u, v ∈ H1(Ω).

We now consider an ”obstacle” ψ ∈ H1(Ω) which in addition satisfies ψ ≤ 0 on ∂Ω.

Furthermore, let Kψ = {v ∈ H1
o (Ω) : v(x) ≥ ψ(x) a.e.}.

With all these assumptions, we can define the obstacle problem as follows:

Problem 1: Let f ∈ H−1 be given. Find u ∈ Kψ so, that

a(v, v − u) ≥ 〈f, v − u〉 holds for all v ∈ Kψ. (12)

This gives rise to the question about existence and uniqueness of a solution to (12).

This is answered by

Theorem 16 There exists a unique solution u ∈ Kψ to Problem 1.

The proof can be found in [5].

With this result at hand, we can investigate the case that we had found a solution

u ∈ Kψ for a given obstacle ψ in (12). In this case, we can divide the set Ω into two

subsets

(i) G := {x ∈ Ω : u(x) > ψ(x)} (open)

(ii) I = I[u] = Ω\G = {x ∈ Ω : u(x) = ψ(x)}, (closed).

Definition 17 The set I is called the coincidence set of the solution u.

We conclude this seminar paper with the following theorem:
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Theorem 18 Let u ∈ Kψ be a solution of Problem 1. Then there exists a nonnegative

Radon measure µ such that

Lu = f + µ in Ω

with

suppµ ⊂ I = {x ∈ Ω : u(x) = ψ(x)}

In particular,

Lu = f in Ω\I.
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