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Abstract

Using the Mellin transform and the complex exponential integral we
derive various representation formulas for the factors of the entire
functions in Hadamards product theorem. The application of these
results on Riemann’s zeta function leads to a new derivation of Rie-
mann’s prime number formula for π(x). We will thereby present a
correct version of this formula, which is given in a wrong way in the
literature. Using the nontrivial zeros of the ζ function we also obtain
explicit formulas for regularizations of von Mangoldt’s function ψ(x).
These regularizations are based on cardinal B-splines and Gaussian
integration kernels, which are related by the Central Limit Theorem.
Our results will then be generalized to a windowed Mellin or Fourier
transform with a Gaussian window function.

1 Introduction

The purpose of this article is threefold.

First we give a detailed introduction to the theory of the complex exponential
integral and derive some related Mellin and Fourier transforms which can be
used for the study of the entire functions in Hadamards product theorem.
Parts of these results are widely spread in literature or can only be found
in mathematical tables of higher functions, see for example the handbook of
Abramowitz and Stegun [1]. But the author has also applied these results in
[8] to derive new factorization theorems for the Riemann ζ-function and to
obtain new representations for fundamental functions in number theory.

One of the various representations of the exponential integral is

Ei(z) := γ + log z + Ei0(z) (1.1)

with Euler’s constant γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
and the entire function

Ei0(z) :=
∞∑
k=1

zk

k · k!
=

z∫
0

et − 1

t
dt =

1∫
0

euz − 1

u
du . (1.2)

In contrast to the entire function Ei0, the functions Ei and log are only defined
on the cut plane C− := { z ∈ C | z /∈ (−∞, 0] } = C \ (−∞, 0] .
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The second purpose is the application of the theory developed here on the
Riemann ζ function and the primes. The exponential integral rather than
the logarithmic integral plays a key role for the correct formulation of Rie-
mann’s famous formulas obtained in [11] for the number π(x) of primes less
than or equal x > 1. It was C.F. Gauss who has observed from extensive
calculations of prime tables that the logarithmic integral Li(x) := Ei(log x) is
a “very good” approximation for π(x). And indeed, it was shown in 1896 by
Hadamard and independently by de la Vallée-Poussin that for appropriate
constant c > 0

Li(x) = π(x) +O(xe−c
√

log x) for x→∞ . (1.3)

In the case that Riemann’s hypothesis is true, Li(x) − π(x) has the much
better error bound O(x1/2+ε) for all ε > 0, see Conrey’s overview article [5].

From the study of the complex ζ function and their zeros Riemann obtained

1859 in [11] the following explicit formula for π∗(x) :=
∞∑
k=1

1
k
π( k
√
x), which is

valid at each point x > 1 of continuity

π∗(x) = Li(x)− lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

Ei(ρ log x) +

∞∫
x

dt

t(t2 − 1) log t
− log 2 . (1.4)

Due to an incorrect use of the analytic continuation principle this formula is
formulated in a wrong way in the literature, where the expressions Ei(ρ log x)
are replaced by Li(xρ).

From the formula for π∗(x), which is denoted by f(x) in Riemann’s article
[11], one can also obtain explicit formulas for π(x) by using the Möbius
inversion formula

π(x) =
∞∑
k=1

µ(k)

k
π∗(

k
√
x) . (1.5)

There are two major ingredients for the derivation of explicit prime number
formulas involving the zeros of the zeta function. The first one is the relation
of the ζ function to number theory via Euler’s product decomposition valid
for <s > 1,

ζ(s) =
∞∑
n=1

n−s =
∞∏

p prime

1

1− p−s
= exp( s

∞∫
1

π∗(x)

xs+1
dx ) . (1.6)
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The second one is the following product decomposition of the ζ function,
which was proved and generalized by Hadamard,

ζ(s) =
1

s− 1

πs/2

Γ( s
2

+ 1)
· 1

2
lim
T→∞

∏
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

(
1− s

ρ

)
. (1.7)

According to Riemann’s approach in [11], the desired explicit representation
formulas for the primes result from a comparison of both product decompo-
sitions by using appropriate Mellin- or Fourier inversion formulas.

Riemann’s formulas for π∗(x) or π(x) are often neglected nowadays, because
they turned out to be equivalent to the simplier formula of von Mangoldt (for
its derivation see the textbooks of Edwards [6] and Ingham [7]), also valid at
each point x > 1 of continuity, namely

ψ(x) :=
∑
pk≤x

log p = x− lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ

ρ
+

1

2
log

x2

x2 − 1
− log(2π) , (1.8)

where the sum is performed with respect to all prime powers pk ≥ 2 with
an exponent k ≥ 1. Von Mangoldt’s derivation of Riemann’s formula for
π∗(x) can be found in the textbook of Edwards [6], its starting point is the
following modification of (1.8) which is valid for r > 0, r 6= 1 and for almost
all x > 1,

x∫
0

x−r dψ(x) =
x1−r

1− r
− lim

T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ−r

ρ− r
−
∞∑
n=1

x−2n−r

−2n− r
− ζ ′(r)

ζ(r)
. (1.9)

However, this formula is also difficult to prove. We will present an interes-
ting alternative derivation of (1.4) by reducing it to von Mangoldt’s original
formula (1.8). For this purpose we prove a representation which is generally
useful for the study of Hadamards product decomposition of certain entire
functions with exponential growth like es(s− 1) ζ(s),

(1− s

ρ
) exp(

s

ρ
) = exp

−s2

∞∫
1

ϕρ(x) · log x− xρ

ρ

xs+1
dx

 (1.10)

with the following abbreviation for x > 1

ϕρ(x) := γ + log(−ρ) + log(log x) + Ei0(ρ log x) . (1.11)
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Formula (1.10) is valid for <ρ < <s and ρ ∈ C \ [0,∞) , where the integral
exists in the Lebesgue sense.

Moreover, beside (1.7) and (1.10) we use the following representation, which
is valid for <s > 1

es (s− 1) ζ(s) = exp

s2

∞∫
1

(π∗(x)− Li(x)) · log x− (ψ(x)− x)

xs+1
dx

 .

(1.12)

Finally we will also investigate explicit formulas for regularizations of von
Mangoldt’s function ψ(x) with cardinal B-splines and Gaussian kernels in
terms of the nontrivial zeros of the zeta function which are certain counter-
parts of the von Mangoldt formula (1.8). Cardinal B-splines and Gaussian
kernels are important tools in the wavelet-Fourier theory, see the textbook
of Chui [4]. More precisely, we consider regularizations of the Lebesgue inte-
grable function η : (0,∞)→ R with

η(x) := ψ(x)− χ(1,∞)(x) ·
(
x+

1

2
log

x2

x2 − 1
− log(2π)

)
, (1.13)

where χ(1,∞) is the characteristic function of the interval (1,∞). We show
that the following Gaussian mollifier of the function η

(Gδ η)(x) :=
1√
2πδ

+∞∫
−∞

exp

(
− u

2

2 δ

)
η (xeu) du (1.14)

results in a very natural way from the cardinal B-spline mollifiers and the
Central Limit Theorem. Then we derive the following explicit formula for
the Gaussian mollifier

(Gδ η)(x) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
ρ2

)
Φ

(
ρ δ + log x√

δ

)
, (1.15)

where Φ is the complex Gaussian error function

Φ(z) :=

∞∫
0

e−
(z−u)2

2

√
2π

du , z ∈ C . (1.16)

We will derive a very efficient asymptotic relation for (1.15). The represen-
tation (1.15) will also be generalized to some kind of windowed Mellin or
Fourier transform with the Gaussian window function in (1.14).
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2 Representation formulas for the zeta func-

tion and their logarithmic derivative via

the Euler product formula

In the following two sections we collect some well known basic facts about
the Riemann zeta function and Hadamard’s factorization which are needed
in Section 5. For a proof we refer to the textbook of Edwards [6], further
references are given below. The Riemann zeta function is given for s ∈ C
with <s > 1 by the absolutely convergent series

ζ(s) :=
∞∑
n=1

1

ns
. (2.1)

Theorem 2.1

There holds the following Euler product formula for <s > 1

ζ(s) =
∞∏

p prime

1

1− p−s
. (2.2)

Theorem 2.2

For any integer number n ≥ 1 we define the von Mangoldt function

Λ(n) :=

{
log p , for n = pm, m ≥ 1, p prime

0 , otherwise ,

and for x ≥ 1 the functions

ψ(x) :=
∑
n≤x

Λ(n) , π(x) :=
∑

p≤x, p prime

1 , π∗(x) :=
∑

1<n≤x

Λ(n)

log n
=
∞∑
n=1

π( n
√
x)

n
,

where π(x) is the number of primes ≤ x. Then we obtain for <s > 1

ζ(s) = exp(
∞∑
n=2

Λ(n)

log n
n−s ) = exp( s

∞∫
1

π∗(x)

xs+1
dx ) (2.3)

−ζ
′(s)

ζ(s)
=
∞∑
n=2

Λ(n)n−s = s

∞∫
1

ψ(x)

xs+1
dx . (2.4)
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For the study of the Riemann ζ function some properties of the complex Γ
function are needed, which are proven in an elegant way in the textbook of
Andrews, Askey and Roy [2]:

Theorem 2.3 For all complex numbers s 6= 0,−1,−2, ..., the Γ function is
defined by

Γ(s) = lim
n→∞

n!ns

s(s+ 1)(s+ 2)...(s+ n)
.

The Γ function has the following properties:

(a) Γ(n+ 1) = n! and Γ(s+ 1) = sΓ(s) for n ∈ N0, s 6= 0,−1,−2, ... .

(b) With Euler’s constant γ := lim
n→∞

(
n∑
k=1

1
k
− log n

)
= 0.5772156... we

have

1

sΓ(s)
=

1

Γ(s+ 1)
= eγs

∞∏
k=1

(
1 +

s

k

)
e−s/k =

∞∏
k=1

1 + s
k(

1 + 1
k

)s .
(c) If s 6= 0,−1,−2, ..., then −Γ′(s)

Γ(s)
= γ +

1

s
+
∞∑
k=1

(
1

s+ k
− 1

k

)
,

and especially Γ′(1) = −γ .

(d) There holds Euler’s reflection formula

1

Γ(1 + s)Γ(1− s)
=

sin(πs)

πs
.

(e) For <s > 0

Γ(s) =

∞∫
0

ts−1e−t dt .

(f) There holds Legendre’s duplication formula

Γ(s) =
2s−1

√
π

Γ(
s+ 1

2
)Γ(

s

2
) .
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The following theorem shows that the Riemann ζ function is everywhere de-
fined in the complex plane, except at s = 1, where ζ(s) has a simple pole.

Theorem 2.4 Analytic continuation of ζ(s), functional equation

(a) For <s > −1 the ζ function is analytically continued by the expression

ζ(s) =
1

s− 1
+

1

2
− s lim

N→∞

N∫
1

x− bxc − 1
2

xs+1
dx .

Thus the ζ function has a simple pole at s = 1 with residue 1.

(b) For −1 < <s < 0 the ζ function is given by

ζ(s) = s lim
N→∞

N∫
0

bxc − x+ 1
2

xs+1
dx .

(c) For <s < 0 the continuation of the ζ function is given by

ζ(s) = 2(2π)s−1 sin
πs

2
Γ(1− s) ζ(1− s) .

Since the Γ-function has no zeros and only simple poles at s = 0,−1,−2, ...,
we conclude that the zeta function has the so called trivial zeros at
s = −2,−4,−6, ..

ζ(−2n) = 0 ∀n ∈ N .

(d) If we define the analytic function ξ on the entire complex plane by

ξ(s) :=
s(s− 1)

2
π−

s
2 Γ(

s

2
) ζ(s) ,

then the functional equation for the Riemann zeta function can be writ-
ten for all s ∈ C in the more symmetric form ξ(s) = ξ(1− s) .

For a proof of this theorem see also Titchmarch [13]. In this textbook there
are also several alternative proofs for the functional equation (c) of the Rie-
mann zeta function.

The following theorem is due to Hadamard and shows that ζ(s) has no zero
on the axis <s = 1.
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Theorem 2.5 Zeros of ζ(s) and ξ(s) and special values at s = 0

(a) Beside the trivial zeros at s = −2,−4,−6, ..., ζ(s) has only zeros in the
critical strip 0 < <s < 1 . There holds ζ(0) = −1

2
. Here ζ(s) is defined

for s ∈ C \ {1}.

(b) The function ξ(s) defined in Theorem 2.3 has only zeros in the critical
strip 0 < <s < 1 . It holds ξ(0) = 1

2
, and ξ(s) is defined for all s ∈ C.

3 A special version of Hadamard’s product

representation

In the previous section we have given number theoretic representations of
the zeta function and their logarithmic derivative based on Euler’s product
representation over the prime numbers.

In this section we will recall analytic representations using Hadamard’s prod-
uct theorem and the zeros of the zeta function. Roughly speaking, the com-
parison of both representations is needed for the prime number formulas of
von Mangoldt and Riemann, but also for the new representation formulas
obtained in Section 5. We formulate only a special version of Hadamard’s
product representation for certain entire functions, which is sufficient for our
applications.

Theorem 3.1 Hadamard’s product representation, special version

Let be f : C → C be analytic in the entire complex plane with f(0) 6= 0 and
zeros ρ1, ρ2, ρ3, ..., such that each zero of order m is included m times in this
sequence.

There may be a constant 0 < α < 2 such that the growing rate of f is bounded
by

(∗) |f(s)| ≤ exp(|s|α) for |s| >> 1 .

Then there are constants a, b ∈ C with f(s) = eas+b
∏
ρk

(
1− s

ρk

)
es/ρk

such that
∑
ρk

1

|ρk|2
<∞ .

The following three examples will be used for our application on the prime
number formulas.
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Example 1: With the analytic continuation lim
s→0
s 6=0

sin(πs)
πs

= 1 there holds the

following product representation for all s ∈ C

f(s) :=
sin(πs)

πs
=

∏
k∈Z\{0}

(
1− s

k

)
es/k =

∞∏
k=1

(
1− s2

k2

)
.

Here inequality (∗) is valid for any α > 1.

Example 2: We define 1/∞ := 0 and 1/0 := ∞ to formulate for all s ∈ C
the product representation of the Γ function in Theorem 2.3(a) as

f(s) :=
1

sΓ(s)
=

1

Γ(s+ 1)
= eγs

∞∏
k=1

(
1 +

s

k

)
e−s/k .

In this case (∗) is satisfied for all α > 1.

Example 3: For all s ∈ C we have

ξ(s) :=
s(s− 1)

2
π−

s
2 Γ(

s

2
) ζ(s) =

1

2
lim
T→∞

∏
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

(
1− s

ρ

)
,

in short notation written as ξ(s) =
1

2

′∏
ρ

(
1− s

ρ

)
, where (∗) is again satis-

fied for all α > 1. Recall that the value ξ(0) = 1
2

was already evaluated in
Theorem 2.5(b).

For a special derivation of the product representation of ξ(s) see Edwards
[6]. It was already known to Riemann [11].

4 The exponential integral and representa-

tions for 1/(s− 1) and (1− s
ρ)

In Hadamard’s product formula Theorem 3.1 for the entire function f under
consideration there occur the factors (1 − s

ρ
) with the roots ρ of f . Recall

the application of this theorem on the ξ-function in Example 3 of the last
section and the formula (2.3) for ζ(s) in Theorem 2.2, namely

ζ(s) = exp( s

∞∫
1

π∗(x)

xs+1
dx ) , <s > 1 . (4.1)
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In order to obtain Riemann’s explicit formula for π∗(x) and π(x), one com-
pares the product formula for ξ(s) with the formula (4.1) for ζ(s). Therefore
it is quite natural to look first for representations of the form

1− s

ρ
= exp(− s

∞∫
1

ϕρ(x)

xs+1
dx ) , <s > 1 , (4.2)

with appropriate complex, but constant values ρ. This will be done next, i.e.
for some given values of ρ a function ϕρ : (1,∞)→ C will be calculated such
that (4.2) is satisfied. By the way, we will also obtain a useful representation
of 1/(s− 1) in order to handle the pole of the zeta function.

We first define the exponential integral

Ei(z) := γ + log z +
∞∑
k=1

zk

k · k!
. (4.3)

We only use the logarithmic main branch log : C− → C on the cut plane

C− := { z ∈ C | z /∈ (−∞, 0] } = C \ (−∞, 0] . (4.4)

Thus we conclude that Ei(z) is also defined for z ∈ C−.

We also need the regular part of the exponential integral, the entire function

Ei0(z) :=
∞∑
k=1

zk

k · k!
=

z∫
0

et − 1

t
dt =

1∫
0

euz − 1

u
du . (4.5)

These representations of Ei0(z) are defined for all z ∈ C.

In order to calculate the exponential integral we generalize Ei0 and define for
n ∈ N0 the entire functions Ein : C→ C by

Ein(z) :=

1∫
0

(1− u)n · e
uz − 1

u
du (4.6)

as well as the entire functions Qn : C→ C with

Qn(z) :=

1∫
0

(1− u)n · euz du = ez
1∫

0

un · e−uz du . (4.7)
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We obtain by induction for all n ∈ N0 and z ∈ C \ {0} the important
recurrence equations

Q0(z) =
ez − 1

z
, Qn+1(z) =

n+ 1

z
Qn(z)− 1

z
. (4.8)

This implies

Qn(z) =
n!

zn+1

(
ez −

n∑
k=0

zk

k!

)
. (4.9)

The next theorem states that the functions Qn and Ein enable an efficient
calculation of Ei0(z) for any z ∈ C by using a combination of the recurrence
equations (4.8) with Taylor expansions of Ein.

Theorem 4.1

(a) For any z ∈ C and any n ∈ N0 we have

Ei0(z) =
n−1∑
m=0

(
Qm(z)− 1

m+ 1

)
+ Ein(z) .

(b) For any z ∈ C and any n ∈ N0 there holds the Taylor expansion

Ein(z) = n!
∞∑
k=1

zk

k · (n+ k)!
=
∞∑
k=1

1

k

k∏
ν=1

z

n+ ν
.

Remark: The recurrence equations (4.8) can be used in combination with the
Taylor expansion of Ein by choosing n := b|z|c for given z ∈ C in Theorem
4.1 to calculate Ei0(z).

Proof: (a) From (4.7) we immediately obtain for any z ∈ C and any m ∈ N0

that

1∫
0

(1− u)m · (euz − 1) du = Qm(z)− 1

m+ 1
. (4.10)

For 0 < u < 1 we evaluate the finite geometric series

n−1∑
m=0

(1− u)m =
1− (1− u)n

u
(4.11)
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and conclude

n−1∑
m=0

1∫
0

(1− u)m (euz − 1) du =

1∫
0

1− (1− u)n

u
(euz − 1) du (4.12)

in order to establish Theorem 4.1(a) with (4.10).

(b) From Ein in (4.6) we take the k-th derivative for k ≥ 1,

Ei(k)
n (z) =

1∫
0

uk−1(1− u)n · euz du , (4.13)

and obtain at z = 0 that Ei(k)
n (0) =

1∫
0

uk−1(1− u)n du =
n! · k!

k · (n+ k)!
.

Regarding also Ein(0) = 0 we also obtain part (b) of Theorem 4.1.

Now we are also able to calculate the exponential integral Ei(z) with arbitrary
accuracy, even for large |z|. However, this method has to be complemented
by asymptotic formulas for the exponential integral, which will also be de-
rived in this section.

Lemma 4.2 Let s be any complex number with <s > 0.

(a) For all n ∈ N0 there holds

1

sn+1
=

∞∫
1

(log x)n

n!

dx

xs+1
.

(b) Assume that ρ ∈ C satisfies <ρ < <s. Then Ei0(ρ log x)/xs+1 is
Lebesgue integrable on the interval (1,∞), and there holds the relation

1

1− ρ
s

= exp

s ∞∫
1

Ei0(ρ log x)

xs+1
dx

 .

(c) The expression (γ + log(log x))/xs+1 is Lebesgue integrable on the in-
terval (1,∞), and there holds the relation

1

s
= exp

s ∞∫
1

γ + log(log x)

xs+1
dx

 .
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Proof: (a) The integral on the right hand side is obviously well defined. The
statement is true for n = 0. Assume the statement is already established
for some n ∈ N0. Then we obtain by partial integration with zero boundary
terms

1

sn+1
=

∞∫
1

(log x)n

n!

dx

xs+1
=

∞∫
1

d

dx

[
(log x)n+1

(n+ 1)!

]
dx

xs
= s

∞∫
1

(log x)n+1

(n+ 1)!

dx

xs+1
.

This is the proof of part (a).

(b) For |z| ≤ 1 we have |Ei0(z)| ≤ Ei0(1) from the Taylor expansion (4.5),
and for |z| > 1 we obtain

|Ei0(z)| ≤ |

z
|z|∫

0

et − 1

t
dt|+ |

z∫
z
|z|

et − 1

t
dt|

≤ Ei0(1) + |z| max(e+ 1, e<z + 1) .

We put z := ρ log x in the last inequality in order to conclude from <s > 0

and <ρ < <s that
1

1− ρ
s

and

∞∫
1

Ei0(ρ log x)

xs+1
dx are well defined.

Next we show that the formula in Lemma 4.2(b) is true in the special case
<s > |ρ|. Then the formula is also true for <ρ < <s by analytic continuation.

In order to evaluate the integral in Lemma 4.2(b) we perform partial integra-

tion, regard
d

dx
Ei0(ρ log x) = (xρ − 1)/(x log x) , and obtain with vanishing

boundary terms

s

∞∫
1

Ei0(ρ log x)

xs+1
dx =

∞∫
1

xρ − 1

log x
· dx
xs+1

. (4.14)

Here xρ is an abbreviation for exp(ρ log x). Using the Taylor expansion of
the exponential function we obtain immediately

xρ − 1

log x
=
∞∑
n=1

ρn (log x)n−1

n · (n− 1)!
. (4.15)

For our restriction <s > |ρ| we have |ρ/s| < 1 and conclude from part (a)

∞∑
n=1

∞∫
1

ρn (log x)n−1

n · (n− 1)!
· dx
xs+1

=
∞∑
n=1

1

n

(ρ
s

)n
= log

1

1− ρ
s

. (4.16)
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Next we show that summation and integration in (4.16) can be interchanged.
Then we have shown part (b) of the Lemma due to (4.14), (4.15), (4.16).

We define for N ∈ N and x > 1 the L1 functions fN by

fN(x) :=
N∑
n=1

ρn (log x)n−1

n · (n− 1)!
· 1

xs+1
.

Then we have already shown the pointwise convergence to

f(x) := lim
N→∞

fN(x) =
xρ − 1

log x
· 1

xs+1
∀x > 1 .

Moreover, we have for all N ∈ N and x > 1

|fN(x)| ≤
∞∑
n=1

|ρ|n (log x)n−1

n · (n− 1)!
· 1

|xs+1|
= F (x) :=

x|ρ| − 1

log x
· 1

x<s+1

with F ∈ L1(1,∞) due to our restriction <s > |ρ|. We finally conclude by
the Lebesgue dominated convergence theorem that

lim
N→∞

∞∫
1

fN(x) dx =

∞∫
1

f(x) dx .

This means the interchange of summation and integration in (4.16), and we
have shown part (b).

In order to prove part (c) we employ the substitution u = log x in the integral
and obtain

∞∫
1

γ + log(log x)

xs+1
dx =

∞∫
0

(γ + log u) e−su du . (4.17)

It follows first from <s > 0 that these integrals are well defined.

However, in contrast to the integral in part (b), we have a singular behaviour
of log(log x) at x = 1 and of log u at u = 0, but the integrals in (4.17) still
converge in the absolute sense.

Next we define the auxiliary function

g(s) := s

∞∫
0

e−su log u du (4.18)
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and form its derivative by applying partial integration and regarding
d
du

(u log u− u) = log u ,

g′(s) =

∞∫
0

e−su log u du− s
∞∫

0

e−su u log u du

=

∞∫
0

e−su log u du+

∞∫
0

(u log u− u) · (−s)e−su du

+

∞∫
0

u · (−s)e−su du = −1

s
.

We conclude that there is a constant C ∈ C such that

g(s) = s

∞∫
0

e−su log u du = −C + log
1

s
, <s > 0 . (4.19)

In order to determine C we put s := 1 and obtain first that

C = −
∞∫

0

e−u log u du . (4.20)

Due to Theorem 2.3(e) and (c) we have

Γ′(1) =

∞∫
0

e−u log u du = −γ ,

this means C = γ, and from (4.19) and (4.20) we finally conclude the part
(c) of Lemma 4.2.
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Theorem 4.3 Let s be any complex number with <s > 0.

(a) Then Ei(log x)/xs+1 is Lebesgue integrable on the interval (1,∞), and
there holds the relation

1

s− 1
= exp

s ∞∫
1

Ei(log x)

xs+1
dx

 .

(b) Assume that ρ ∈ C \ [0,∞) and <ρ < <s . Then

1− s

ρ
= exp

−s ∞∫
1

γ + log(−ρ) + log(log x) + Ei0(ρ log x)

xs+1
dx

 .

Proof: Part (a) follows from Lemma 4.2(b) with ρ := 1 and from Lemma
4.2(c) by multiplication.

Part (b) also follows from Lemma 4.2(b),(c) by multiplication

1− s

ρ
=

s

(−ρ)
· (1− ρ

s
) = exp

−s ∞∫
1

γ + log(−ρ) + log(log x)

xs+1
dx


· exp

−s ∞∫
1

Ei0(ρ log x)

xs+1
dx

 .

Theorem 4.4

Let s, α be any complex numbers with <s > 0, <α > 0. Then

(a) exp

s
∞∫

1

∞∫
x

t−(α+1) dt
log t

xs+1
dx

 = 1 +
s

α
.

(b) For any real x > 1 there holds

−
∞∫
x

t−(α+1) dt

log t
= γ + log α + log(log x) + Ei0(−α log x) .
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Proof: (a) The left hand side in (b) has only a logarithmic singularity at
x = 1, and thus the left hand side in (a) defines for any fixed s with <s > 0
an analytic function in the half plane <α > 0 . We conclude that

∂

∂α

s
∞∫

1

∞∫
x

t−(α+1) dt
log t

xs+1
dx

 = −s
∞∫

1

∞∫
x

t−(α+1) dt

xs+1
dx

= −s
∞∫

1

x−α

α

xs+1
dx =

1

s+ α
− 1

α
,

and therefore

s

∞∫
1

∞∫
x

t−(α+1) dt
log t

xs+1
dx = f1(s) + log

(
1 +

s

α

)
with an integration constant f1(s) depending only on s. But f1(s) must be
zero for all s, because both sides of the last equality must be zero in the limit
α→∞ along the positive real axis.

(b) Differentiation with respect to x > 1 on both sides in (b) gives the same

result
x−(α+1)

log x
. This means that both sides in (b) can only differ in an in-

tegration constant f2(α). We put ρ = −α in Theorem 4.3(b) in order to
conclude with (a) that f2(α) = 0 for all real α > 0. The general result for
<α > 0 follows by analytic continuation.

In the next theorem we derive some integral representations for the exponen-
tial integral. A resulting asymptotic expansion for Ei(z) is very efficient for
|=z| � |<z|.

Theorem 4.5 Integral representations and asymptotic expansion for Ei(z)

(a) Let α be any complex number with <α > 0 and =α 6= 0. Then we
obtain for all y > 0

Ei(−αy) = −iπ sign(=α)−
∞∫
y

e−αu

u
du .
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(b) Let be σ, t ∈ R and t 6= 0. Then we put z := σ + it and obtain

Ei(z) = iπ sign(=z) +

∞∫
0

ez−u

z − u
du .

Moreover, for all n ∈ N0 we have the asymptotic expansion

∞∫
0

ez−u

z − u
du =

ez

z

n∑
k=0

k!

zk
+ (n+ 1)!

∞∫
0

ez−u

(z − u)n+2
du ,

and for all k ∈ N0 the estimate∣∣∣∣∣∣
∞∫

0

ez−u

(z − u)k
du

∣∣∣∣∣∣ ≤ eσ

|t|k
.

(c) For =z > 0 we have

Ei(z) = iπ sign(=z)− lim
T→∞

T∫
=z

eσ+iϑ

σ + iϑ
i dϑ .

Proof: (a) The left and right hand side of the equation in (a) define analytic
functions in the quarter plane <α > 0 and =α > 0. By performing the
derivative with respect to α on both sides we obtain that

∂

∂α
Ei(−αy) =

∂

∂α

∓iπ − ∞∫
y

e−αu

u
du

 =
e−αy

α
.

It remains to determine the constants ∓iπ on the right hand side. We apply
the substitution u = log t on the integral in Theorem 4.4(b) and obtain for
the number x > 1 given there that

−
∞∫

log x

e−αu

u
du = γ + log α + log(log x) + Ei0(−α log x) .

In this equation we put y := log x > 0 and conclude for =α > 0

−
∞∫
y

e−αu

u
du = log α + log y − log(−αy) + Ei(−αy) = iπ + Ei(−αy) .
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We obtain Theorem 4.5(a) by regarding that Ei(−αy) = Ei(−αy) .

Note that the condition =α > 0 guarantees that the argument −αy does
not pass the cut of the logarithm function in the exponential integral. This
condition is not necessary in Theorem 4.4(b), which makes use of the entire
function Ei0.

It is not difficult to check that the representations for Ei(z) in (b) and (c)
define analytic functions in the half planes t = =z > 0 and t = =z < 0.
Differentiation with respect to z = σ + it reduces the proof of the represen-
tation formulas to the determination of the integration constants, which just
follow from part (a) in the limit σ → −∞. From the representation for Ei(z)
in (b) we also obtain the asymptotic expansion by partial integration. The
estimate for the asymptotic expansion of Ei(z) in (b) results from∣∣∣∣∣∣

∞∫
0

ez−u

(z − u)k
du

∣∣∣∣∣∣ ≤
∞∫

0

|e(σ−u)+it|
|(σ − u) + it|k

du ≤
∞∫

0

eσ−u

|t|k
du =

eσ

|t|k
.

The functions Ei and Ei0 are closely related to the cosine and sine integral
functions, for which we obtain the following

Corollary 4.6

The cosine and sine integral functions Ci : C− → C and Si : C→ C are given
by

Ci(z) := γ + log z +

z∫
0

cos(t)− 1

t
dt ,

Si(z) :=

z∫
0

sin t

t
dt =

Ei0(iz)− Ei0(−iz)

2i
.

They satisfy the asymptotic relations

lim
x→∞

Ci(x) = 0 , lim
x→∞

Si(x) =
π

2
.
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Theorem 4.7

Let s, ρ be any complex numbers with <s > 0 and <ρ < <s. By d log
ds
f(s) :=

f ′(s)
f(s)

we denote the logarithmic derivative of an analytic expression f(s).
Then

(a) s

∞∫
1

(xρ − 1)/ρ

xs+1
dx =

d log

ds
(1− s

ρ
) =

s

ρ(s− ρ)
− 1

ρ
=

1

s− ρ
,

(b) s

∞∫
1

γ + log (x− 1)

xs+1
dx = −d log

ds
Γ(s) = −Γ′(s)

Γ(s)
,

(c) s

∞∫
1

1
2

log x2

x2−1

xs+1
dx =

∞∑
k=1

s

2k(s+ 2k)
=
γ

2
+
d log

ds
Γ(
s

2
+ 1) .

Proof: (a) is trivial, (b) follows with Lemma 4.2(a) and Theorem 2.3(c) from

log(x− 1) = log x− log
1

1− 1/x
= log x−

∞∑
k=1

x−k

k
, x > 1 , and the proof

of (c) is analogous to (b).

5 Regularizations for von Mangoldt’s ψ(x)

In the sequel we assume that

σ0, σ1 ∈ R ∪ {−∞,+∞} and σ0 < σ1 . (5.1)

Depending on σ0, σ1 we define the strip S(σ0, σ1) in the complex plane by

S(σ0, σ1) := {s ∈ C |σ0 < <s < σ1 } . (5.2)

In the preceeding section there often occurs the Mellin transform of a given
function f : (0,∞)→ C ,

(Mf)(s) :=

∞∫
0

f(x)

xs+1
dx , (5.3)

defined for all s in an appropriate strip S(σ0, σ1), provided that f(x)/xs+1 is
Lebesgue integrable on (0,∞) for all fixed s ∈ S(σ0, σ1). There are slightly
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different but equivalent definitions of a Mellin transform, however the defini-
tion above is better suited for our study of the ζ function and the primes.

Mellin transforms include the Fourier-Laplace transforms, which can be seen
by applying the integral substitution x = eu in (5.3), namely

(Mf)(s) =

∞∫
−∞

f(eu) e−su du . (5.4)

Note that f(x) = 0 for 0 < x < 1 leads to the lower integration limit 0 instead
of −∞ in (5.4), such that (5.4) contains the usual Laplace transformation
for =s = 0 and <s > 0 as a special case.

The relation between the Mellin transform and the Fourier-Laplace trans-
form is important, because we can use the Fourier-theory in order to obtain
the following uniqueness result and inversion formula:

Theorem 5.1 The function f : (0,∞)→ C may be given in such a way that
|f(x)|/xσ+1 is Lebesgue integrable on (0,∞) for any fixed σ ∈ (σ0, σ1). Then
there hold

(a) If (Mf)(σ + it) = 0 for all t ∈ R and fixed σ ∈ (σ0, σ1), then f(x) ≡ 0
for almost all x > 0.

(b) Mellin inversion formula

Assume that the Mellin transform (Mf)(σ + it) is Lebesgue integrable
on R with respect to t ∈ R for fixed σ ∈ (σ0, σ1). Then the function
g : (0,∞)→ C with

g(x) :=
1

2π

∞∫
−∞

(Mf)(σ + it)xσ+it dt =

σ+i∞∫
σ−i∞

(Mf)(s)xs

2πi
ds

is well defined and continuous, and there holds g(x) = f(x) for almost
all x > 0.

Remark: The uniqueness result in part (a) of this theorem is a special case of
part (b). Here we have just used the Fourier inversion formula for Lebesgue
integrable Fourier transforms.
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Recall the definition of von Mangoldt’s function ψ in Theorem 2.2. Due to
Theorem 2.3(a) and Theorem 2.4(d) we can write

ζ(s) =
ξ(s)

s− 1
· πs/2

Γ( s
2

+ 1)
. (5.5)

Due to Hadamard’s product representations for ξ(s) and Γ( s
2

+ 1) the Mellin
transform of ψ is given for <s > 1 by the absolutely convergent series

−1

s

ζ ′

ζ
(s) =

1

s− 1
−

∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(s− ρ)
+
∞∑
k=1

1

2k(s+ 2k)
− ζ ′(0)

s ζ(0)
. (5.6)

Having Theorem 4.7 in mind, it is natural to state von Mangoldt’s formula
at each point x > 1 of continuity, namely

ψ(x) = x− lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ

ρ
+

1

2
log

x2

x2 − 1
− ζ ′(0)

ζ(0)
. (5.7)

A technical difficult proof of (5.7) was presented by von Mangoldt, see also
the textbook of Edwards [6]. The numerical constant in (5.7) turns out to
be

ζ ′(0)

ζ(0)
= log(2π) . (5.8)

The following theorem is used for the derivation of von Mangoldt’s formula
(5.7), but we will also use the resulting Lemma 5.3 for Riemann’s prime
number formula in the next section. It provides some information about the
vertical distribution of the zeros of the zeta function in the critical strip.
The following result was used by Riemann in [11] and gives the asymptotic
density of the nontrivial roots. It was proved by von Mangoldt [10] and then
simplified by Backlund [3].

Theorem 5.2 For T ≥ 2 let N(T ) be the number of zeros ρ = σ + it of
the ζ-function in the critical strip 0 < σ < 1 with 0 < t ≤ T , regarding the
multiplicity of the roots. Then

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ) . (5.9)
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Theorem 5.2 can be applied very easily for the proof of the following Lemma
by using the Stieltjes calculus.

Lemma 5.3 There hold the following asymptotic relations for T →∞

(a)
∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

1

|ρ|
=

1

2π
(log T )2 +O(log T ) ,

(b)
∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|>T

1

|=ρ|2
=

1

π

log T

T
+O(1/T ) .

Proof: We use Stieltjes integral representations as follows in order to apply
Theorem 5.2

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

1

|=ρ|
= 2

T∫
0

dN(t)

t
= 2

T∫
0

N(t)

t2
dt+ 2

N(T )

T
=

(log T )2

2π
+O(log T ) ,

where the boundary term of partial integration is zero because ζ(s) has no
zero on the line segment 0 < s < 1. The first part of the Lemma is now a
consequence of

1

|=ρ|
− 1

|=ρ|2
<

1

|=ρ|+ 1
<

1

|ρ|
<

1

|=ρ| − 1
<

1

|=ρ|
+

1

|=ρ|2
,

since the imaginary part of ρ is larger than 1, while the real part is between
0 and 1. For the second part we obtain∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|>T

1

|=ρ|2
= 2

∞∫
T

dN(t)

t2
= 4

∞∫
T

N(t)

t3
dt− 2

N(T )

T 2
=

1

π

log T

T
+O(1/T ) .

Without going into details we will present the key idea in order to obtain a
short proof of the von Mangoldt formula (5.7). On one hand it is based on
the Fourier- or Mellin-inversion formula for integrable and piecewise smooth
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functions, a variant of Theorem 5.1 in order to handle the jump discontinuities
of ψ(x). On the other hand there holds

lim
T→∞

σ+iT∫
σ−iT

[
ξ′(s)

ξ(s)
− ξ′(0)

ξ(0)

]
xs

s
ds = lim

T→∞

σ+iT∫
σ−iT

∑
ρ : ζ(ρ)=0
0<<ρ<1

xs

ρ(s− ρ)
ds . (5.10)

The main difficulty is to prove that termwise integration in (5.10) is possible.
But this can be justified by regarding Theorem 5.2 and the identity

σ+iT∫
σ−iT

xs

ρ(s− ρ)
ds =

σ+iT∫
σ−iT

ϕs(x)

(s− ρ)2
ds+

s ϕs(x)

ρ(s− ρ)

∣∣∣∣s=σ+iT

s=σ−iT
, (5.11)

where s = σ + it for some σ > 1, t ∈ R and for x > 1

ϕs(x) := Ei(s log x)− iπsign(=s) =

1∫
0

xs du

s log x+ log u
∼ xs

s log x
for |t| → ∞ .

We will now derive new von Mangoldt like prime number formulas for ap-
propriate regularizations of ψ(x).

Assume that f(x)/xs+1 is Lebesgue integrable on (0,∞) with respect to x on
some strip σ0 < <s < σ1 and that f(x) = 0 for 0 < x < δ and some constant
δ > 0. We define for a positive parameter ε and all x > 0 the regularization
of f by the integral mean value

(Rεf)(x) :=

1
2∫

− 1
2

f (x exp(ε u)) du . (5.12)

Then the Mellin transform of (Rεf) is

∞∫
0

(Rεf)(x)

xs+1
dx =

sinh( s ε
2

)

( s ε
2

)

∞∫
0

f(y)

ys+1
dy . (5.13)

Note that f(x) = 0 for 0 < x < δ leads to a vanishing boundary term in the
application of the partial integration above.

Next we define the Lebesgue integrable function η : (0,∞)→ R by

η(x) := ψ(x)− χ(1,∞)(x) ·
(
x+

1

2
log

x2

x2 − 1
− log(2π)

)
, (5.14)
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where χ(1,∞) is the characteristic function of the interval (1,∞). Due to
Theorem 4.7 and (5.6) the Mellin transform of η is for <s > 1

∞∫
0

η(y)

ys+1
dy =

∞∫
1

η(y)

ys+1
dy = −

∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(s− ρ)
. (5.15)

We define for ε > 0 and all n ∈ N0 the regularizations R
(n)
ε : (0,∞) → R of

the function η by the recurrence relations

R(0)
ε η := η , R(n+1)

ε η := Rε

(
R(n)
ε η
)
. (5.16)

From (5.13) and (5.15) we obtain for all ε > 0 and all n ∈ N0

∞∫
0

(
R

(n)
ε η
)

(x)

xs+1
dx = −

∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(s− ρ)

(
sinh( s ε

2
)

( s ε
2

)

)n
. (5.17)

In the sequel we assume that n ≥ 1. On the right hand side of (5.17) the
Mellin inversion integral formula can be applied termwise due to n ≥ 1 to

recover
(
R

(n)
ε η
)

(x) according to

(
R(n)
ε η
)

(x) = − 1

2πi

∑
ρ : ζ(ρ)=0
0<<ρ<1

σ+i∞∫
σ−i∞

xs

ρ(s− ρ)

(
sinh( s ε

2
)

( s ε
2

)

)n
ds . (5.18)

The summation of the integrals is performed with respect to the nontrivial
zeros of the ζ-function, where the ordering of the terms is arbitrary thanks
to the absolute convergence. Here σ is any fixed real number larger than 1.

Each single integral in (5.18) can be calculated if we replace for T > 0 the
integration path from σ − i∞ to σ + i∞ by the closed rectangular path ΓT
ranging from σ − iT to σ + iT , from σ + iT to σ − T + iT , from σ − T + iT
to σ − T − iT and from σ − T − iT to σ − iT . If x > 1 and if ε > 0 is small
enough such that log x > n ε

2
, then we obtain by Cauchy’s theorem

1

2πi

σ+i∞∫
σ−i∞

xs

ρ(s− ρ)

(
sinh( s ε

2
)

( s ε
2

)

)n
ds =

lim
T→∞

1

2πi

∫
ΓT

xs

ρ (s− ρ)

(
sinh( s ε

2
)

( s ε
2

)

)n
ds =

xρ

ρ

(
sinh(ρ ε

2
)

(ρ ε
2

)

)n
. (5.19)
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For log x > n ε
2

there results the formula

(
R(n)
ε η
)

(x) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ

(
sinh(ρ ε

2
)

(ρ ε
2

)

)n
. (5.20)

We conclude at each point x > 1 of continuity for all n ≥ 1 that

ψ(x) = x− lim
ε→0

∑
ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ

(
sinh(ρ ε

2
)

(ρ ε
2

)

)n
+

1

2
log

x2

x2 − 1
− log(2π) . (5.21)

The regularizations (5.16) can also be rewritten by the n-fold integral

(
R(n)
ε η
)

(x) =

+ 1
2∫

− 1
2

+ 1
2∫

− 1
2

· · ·

+ 1
2∫

− 1
2

η (x exp(ε (u1 + ...+ un))) du1...dun . (5.22)

Using the n-th order cardinal B-splines Nn(u),

N1(u) := χ(0,1)(u) , Nn+1(u) :=

1∫
0

Nn(u− v) dv , n ≥ 1 , (5.23)

we obtain that

(
R(n)
ε η
)

(x) =

+n
2∫

−n
2

Nn(u+
n

2
) η(x exp(ε u)) du . (5.24)

The n-th order cardinal B-spline Nn(u) has support [0, n], is normalized, has
center n

2
and variance n/12, i.e.

n∫
0

Nn(u) du = 1 ,

n∫
0

uNn(u) du =
n

2
,

n∫
0

(u− n

2
)2Nn(u) du =

n

12
, (5.25)

and by the Central Limit Theorem we have with uniform convergence in u

lim
n→∞

√
n

12
Nn(

√
n

12
u+

n

2
) =

1√
2 π

exp

(
−u

2

2

)
. (5.26)

For more details about cardinal B-splines see the textbook of Chui [4].

26



Thus the regularizations (5.16) are related to the Gaussian regularization

(Gδ η)(x) :=
1√
2πδ

+∞∫
−∞

exp

(
− u

2

2 δ

)
η (xeu) du (5.27)

for a constant parameter δ > 0 with its Mellin transform

+∞∫
0

(Gδ η)(x)

xs+1
dx = − exp

(
δ

2
s2

) ∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(s− ρ)
. (5.28)

Here we will not prove (5.28), which holds for <s > 1, because we will obtain
a generalization of this result in Theorem 5.6.

To see the relation between Gδ η and the cardinal B-splines we define for
given n ≥ 1 and given δ > 0

εn :=

√
12 δ

n
. (5.29)

Then we obtain with (5.26) and (5.24) that

(Gδ η)(x) =
1√
2π

+∞∫
−∞

exp

(
−v

2

2

)
η
(
xe
√
δ v
)
dv

= lim
n→∞

√
n

12

+∞∫
−∞

Nn(

√
n

12
v +

n

2
) η(xe

√
δ v) dv

= lim
n→∞

(R(n)
εn η)(x) . (5.30)

Note that (R
(n)
ε η)(x) in (5.16) is for x� 1 a mean value of ψ(x)−x+log(2π).

In the Gaussian limit n→∞ there results

lim
n→∞

(
sinh(ρ εn

2
)

(ρ εn
2

)

)n
= exp

(
δ

2
ρ2

)
, (5.31)

which can be seen by Taylor expansion of sinh z
z

. However, we cannot use
(5.20) and (5.31) in order to express (Gδ η)(x) in terms of the zeros of the
zeta function due to the restriction log x − nεn

2
> 0. Fortunately this is not

necessary because we can termwise apply the Mellin inversion formula in
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Theorem 5.1(b) on the Mellin transform (5.28). For this purpose we need
the following

Lemma 5.4 For x, δ > 0, ρ ∈ C, α ∈ R and <ρ < α we have

fδ(x, ρ) :=
1

2πi

α+i∞∫
α−i∞

xs−ρ exp
(
δ
2
s2
)

s− ρ
ds = exp

(
δ

2
ρ2

)
Φ

(
ρ δ + log x√

δ

)

with the complex Gaussian error function Φ(z) :=

∞∫
0

e−
(z−u)2

2

√
2π

du , z ∈ C .

Proof: First we form the derivative

∂fδ
∂x

(x, ρ) =
x−ρ−1 exp

(
− log2 x

2δ

)
2πi

α+i∞∫
α−i∞

exp

(
δ

2

(
s+

log x

δ

)2
)
ds , (5.32)

and conclude that the integral on the right hand side in (5.32) is defined for
α ∈ R and independent on α by Cauchy’s Theorem and the rapid decay of
the integrand. We put α := − log x

δ
and obtain

∂fδ
∂x

(x, ρ) =
x−ρ−1

√
2πδ

exp

(
− log2 x

2δ

)
. (5.33)

On the other hand we have

lim
x→0+

fδ(x, ρ) = 0 , (5.34)

such that

fδ(x, ρ) =

x∫
0

t−ρ−1

√
2πδ

exp

(
− log2 t

2δ

)
dt . (5.35)

Using the substitution u = log t in (5.35) we can easily evaluate the resulting
integral in order to obtain Lemma 5.4.

There results the following

Theorem 5.5

(a) For the Gaussian regularization of η we have

(Gδ η)(x) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
ρ2

)
Φ

(
ρ δ + log x√

δ

)
.

28



(b) If we define for x > 0 and β ∈ C the quantity

Hδ(x, β) := exp

(
δ

2
β2

)(
1− Φ

(
β δ + log x√

δ

))
,

then we obtain for <β ≥ 0 and β 6= 0 the estimate

|Hδ(x, β)| ≤ 2x−<β

|β|
1√
2πδ

exp

(
− log2 x

2 δ

)
.

Proof: Part (a) results from Lemma 5.4, the Mellin inversion formula and
part (b). In order to show part (b) we conclude for β 6= 0

Hδ(x, β) = exp

(
δ

2
β2

) 1−
∞∫
0

exp

(
−1

2

(
β δ+log x√

δ
− u
)2
)

√
2π

du



= x−β exp

(
δ

2
β2 + β log x

) ∞∫
0

exp

(
−1

2

(
β δ+log x√

δ
+ v
)2
)

√
2π

dv

= x−β
∞∫

0

exp

(
−1

2

(
v + log x√

δ

)2
)

√
2π

exp
(
−β
√
δ v
)
dv

=
x−β

β

1√
2πδ

∞∫
0

(
1− e−β

√
δ v
) (

v +
log x√
δ

)
exp

(
−1

2

(
v +

log x√
δ

)2
)
dv .

(5.36)

From this equality we finally obtain for <β ≥ 0 due to v ≥ 0 that

|Hδ(x, β)| ≤ x−<β

|β|
1√
2πδ

∞∫
0

2

(
v +

log x√
δ

)
exp

(
−1

2

(
v +

log x√
δ

)2
)
dv

=
2x−<β

|β|
1√
2πδ

exp

(
− log2 x

2 δ

)
.

Note that the last inequality is in perfect agreement with the asymptotic
prediction (5.31) from the Central Limit Theorem, because it implies∣∣∣∣∣∣∣∣−

∑
ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
ρ2

)
− (Gδ η)(x)

∣∣∣∣∣∣∣∣ ≤
c√
2πδ

exp

(
− log2 x

2 δ

)
(5.37)
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for a constant c > 0 neither depending on x > 0 nor depending on δ > 0.
Thus the counterpart of (5.21) reads in the Gaussian limit

ψ(x) = x− lim
δ→0

∑
ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
ρ2

)
+

1

2
log

x2

x2 − 1
− log(2π) . (5.38)

Theorem 5.5 can be generalized if we introduce for x, δ > 0 and λ ∈ C the
following integral transform of η,

(Gδ,λ η)(x) :=
1√
2πδ

+∞∫
−∞

e−λu exp

(
− u

2

2 δ

)
η (xeu) du . (5.39)

For λ = 0 it reduces to Gδ η. We obtain

Theorem 5.6

(a) For <s > 1 we have the following Mellin transform of Gδ,λ η

∞∫
0

(Gδ,λ η)(x)

xs+1
dx = − exp

(
δ

2
(s− λ)2

) ∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(s− ρ)
.

(b) The representation of Gδ,λ η in terms of the nontrivial zeros of the ζ
function reads

(Gδ,λ η)(x) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
(ρ− λ)2

)
Φ

(
(ρ− λ) δ + log x√

δ

)
.

Proof: For part (a) we conclude that

∞∫
0

(Gδ,λ η)(x)

xs+1
dx =

+∞∫
−∞

e−λu√
2πδ

exp

(
− u

2

2 δ

)  ∞∫
0

η (xeu)

xs+1
dx

 du . (5.40)

On the inner integral we apply the substitution y = x eu with dx/x = dy/y,
x−s = eus y−s and obtain

∞∫
0

(Gδ,λ η)(x)

xs
dx

x
=

+∞∫
−∞

e(s−λ)u

√
2πδ

exp

(
− u

2

2 δ

)  ∞∫
0

η(y)

ys
dy

y

 du . (5.41)
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From (5.15) we obtain that

∞∫
0

(Gδ,λ η)(x)

xs+1
dx = −

∑
ρ : ζ(ρ)=0
0<<ρ<1

1

ρ (s− ρ)

+∞∫
−∞

e(s−λ)u

√
2πδ

exp

(
− u

2

2 δ

)
du

= −
∑

ρ : ζ(ρ)=0
0<<ρ<1

1

ρ (s− ρ)
exp

(
δ (s− λ)2

2

)
. (5.42)

In order to prove part (b) we will directly apply the Mellin transform on the
desired representation, which will also lead to an alternative proof of part (a)
in Theorem 5.5. We obtain for each fixed ρ that

− e
δ
2

(ρ−λ)2

ρ

∞∫
0

xρ−s−1 Φ

(
δ (ρ− λ) + log x√

δ

)
dx

=
e
δ
2

(ρ−λ)2

ρ
√

2πδ

∞∫
0

xρ−s

ρ− s
exp

{
−1

2

(
(ρ− λ)

√
δ +

log x√
δ

)2
}
dx

x

=
1

ρ (ρ− s)
√

2πδ

∞∫
0

xλ−s exp

(
− log2 x

2 δ

)
dx

x

=
1

ρ (ρ− s)
√

2πδ

∞∫
−∞

eu(λ−s) e−
u2

2 δ du

= − 1

ρ (s− ρ)
exp

(
δ (s− λ)2

2

)
.

Thus we have shown Theorem 5.6.

Remark: The series in Theorem 5.6(b) is absolute convergent due to (5.36)
and |1 − exp(−β

√
δv)| ≤ 1 + exp(−<β

√
δv) with β := ρ − λ. The inte-

gral transform in (5.39) shows a strong relationship to the windowed Fourier
transforms. It permits the study of the local behaviour of η(x) and ψ(x)
in terms of the nontrivial roots of the ζ function. The function η(x) and its
regularizations describe the fluctuations of the von Mangoldt function ψ, and
these fluctuations are caused by the nontrivial zeros of the zeta function.

These results could be obtained from Euler’s and Hadamard’s product de-
composition, without making use of the von Mangoldt formula. However,
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we can employ (5.7) in order to derive a further explicit formula which gives
another explanation for the asymptotic behaviour of (5.37).

We start for real x > 0 with the definition of the absolute convergent series

g(x) := −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ (1− ρ)
, (5.43)

which represents a continuous function for positive x. We determine g by
performing for 0 < x < 1 its termwise derivative and making use of the
functional equation ξ(s) = ξ(1− s) as follows

g′(x) = − lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ−1

1− ρ
= − lim

T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

(
1
x

)1−ρ

1− ρ
= η(

1

x
) . (5.44)

For x = 1 we obtain

g(1) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

1

ρ(1− ρ)
= 2 (log(2π)− 1)− (γ + log π) , (5.45)

and thus for 0 < x < 1

g(x) = g(1) +

x∫
1

η

(
1

t

)
dt . (5.46)

We conclude for all x > 0 the convergence of

η̃(x) := − lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ

ρ
(5.47)

by addying for 0 < x < 1 termwise the series for g(x) and von Mangoldt’s
series for −xη

(
1
x

)
,

g(x)− xη
(

1

x

)
= lim

T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

xρ · (ρ− 1)

ρ(1− ρ)
= η̃(x) . (5.48)
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Like η, the function η̃ also describes the fluctuations of von Mangoldt’s ψ
function and also has a logarithmic singularity at x = 1. Note η̃(x) = η(x)
for all x > 1. But the following “reflection formula” for η̃ is valid for all x > 0

η̃(x) + x η̃

(
1

x

)
= 2 η̃(1) +

x∫
1

η̃

(
1

t

)
dt . (5.49)

Here we have 2 η̃(1) = g(1). Instead of (5.39) we consider now for x, δ > 0
and λ ∈ C the integral transform

(Gδ,λ η̃)(x) :=
1√
2πδ

+∞∫
−∞

e−λu exp

(
− u

2

2 δ

)
η̃ (xeu) du . (5.50)

Then the following Theorem gives a very simple explicit formula by making
essentially use of Theorem 5.6(b):

Theorem 5.7 The representation of Gδ,λ η̃ in terms of the nontrivial zeros
of the ζ function reads

(Gδ,λ η̃)(x) = −
∑

ρ : ζ(ρ)=0
0<<ρ<1

xρ

ρ
exp

(
δ

2
(ρ− λ)2

)
.

Proof: This results formally by termwise integration from (5.47) and (5.50).
For a rigorous derivation we split the integral (5.50) into two parts, integrat-
ing from − log x to∞ and from −∞ to − log x, respectively. The first one is
just (Gδ,λ η)(x) in Theorem 5.6(b), and the second one can also be evaluated
due to Theorem 5.6(b) by using the relation (5.48), the integral substitution
x eu = 1

x
e−v and the symmetry relations Φ(z) + Φ(−z) = 1, ξ(s) = ξ(1− s).

Both definitions of the fluctuation functions η and η̃ are useful for different
purposes. The function η has the advantage that its Mellin transform is
well defined, whereas the representation formula for the regularization of η̃
in Theorem 5.7 has a very simple structure.
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6 Riemann’s formula for π∗(x)

In terms of Stieltjes differentials there holds the following relation between
von Mangoldt’s function ψ(x) and Riemann’s function π∗(x), by Riemann
denoted by f(x),

dπ∗(x) log x = dψ(x) . (6.1)

This relation has the interesting consequence

x∫
1

π∗(t)

t
dt = π∗(x) log x− ψ(x) , (6.2)

which is valid for all x > 1 . Using this identity and partial integration we
rewrite the integral

∞∫
1

π∗(x)

xs+1
dx =

∞∫
1

π∗(x)

x
· dx
xs

= s

∞∫
1

 x∫
1

π∗(t)

t
dt

x−(s+1) dx ,

and obtain in view of (6.2) and (2.3)

∞∫
1

π∗(x)

xs+1
dx = s

∞∫
1

π∗(x) log x− ψ(x)

xs+1
dx (6.3)

as well as

ζ(s) = exp

s2

∞∫
1

π∗(x) log x− ψ(x)

xs+1
dx

 . (6.4)

Assume that ρ ∈ C \ [0,∞) and <ρ < <s . Then we define for x > 1

ϕρ(x) := γ + log(−ρ) + log(log x) + Ei0(ρ log x) , (6.5)

and obtain from Theorem 4.3 by partial integration analogous as for the
derivation of (6.4) the two relations

(1− s

ρ
) exp(

s

ρ
) = exp

−s2

∞∫
1

ϕρ(x) log x− xρ

ρ

xs+1
dx

 (6.6)
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as well as

exp(−s)
s− 1

= exp

s2

∞∫
1

Li(x) log x− x
xs+1

dx

 (6.7)

with the logarithmic integral Li(x) := Ei(log x) . The next equation follows
from the product representation of 1/Γ(s/2 + 1) and Theorem 4.4(b) if we
calculate the sum of the expressions in (6.6) with respect to all trivial roots
ρ = −2n of the ζ-function, namely

exp(−s γ
2
)

Γ( s
2

+ 1)
= exp

s2

∞∫
1

(
log x ·

∞∫
x

dt
t(t2−1) log t

− 1
2

log x2

x2−1

)
xs+1

dx

 . (6.8)

Finally we have due to Lemma 4.2(a) the identity

exp(s log(2π))

2
= exp

s2

∞∫
1

−(log 2) log x+ log(2π)

xs+1
dx

 . (6.9)

The last four representations are valid for all complex s with <s > 1 , where
all the integrals are well defined in the Lebesgue sense. Especially the term
log x under the integral in equation (6.8) is very important since it eliminates
the pole singularity at x = 1 of the expression

∞∫
x

dt

t(t2 − 1) log t
.

Now we determine the product of the expressions (6.6) with respect to all
nontrivial zeros ρ of the ζ-function and obtain∏

ρ : ζ(ρ)=0
0<<ρ<1

((
1− s

ρ

)
exp(

s

ρ
)

)
= 2 ξ(s) πs/2 exp

(
s
(

1 +
γ

2
− log(2π)

))
.

(6.10)

We note that due Theorem 4.5(b) the following series converges pointwise
and absolutely for all x > 1 according to
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lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

(
ϕρ(x) log x− xρ

ρ

)
=

∑
ρ : ζ(ρ)=0
0<<ρ<1

((
Ei(ρ log x)− iπ sign(=ρ)

)
log x− xρ

ρ

)
=

log x

∞∫
0

∑
ρ : ζ(ρ)=0
0<<ρ<1

xρ e−u

(ρ (log x)− u)2
du . (6.11)

On the last line we could apply the Lebesgue dominated convergence theorem
in view of Lemma 5.3(b).

For x > 1 we denote the expression on the right hand side in (6.11) by ∆(x).
We first conclude that ∆(x)/xs+1 is Lebesgue integrable on each x-interval
(x0,∞) with x0 > 1 for fixed s with <s > 1.

Assume for a while we know that ∆(x)/xs+1 is Lebesgue integrable on the
whole x-interval (1,∞). The product of the four expressions (6.7)-(6.10) gives
ζ(s) due to equation (5.5). We compare this product with the representation
(6.4) for ζ(s) to conclude from our assumption and from von Mangoldt’s
formula for ψ(x) with (6.11) and Theorem 5.1(a) that Riemann’s formula for
π∗(x) is also valid, namely

π∗(x) = Li(x)− lim
T→∞

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤T

Ei(ρ log x) +

∞∫
x

dt

t(t2 − 1) log t
− log 2 (6.12)

for all x > 1 such that x 6= pα for all prime numbers p ≥ 2 and all integer
exponents α ≥ 1. We have already shown the pointwise convergence of the
right hand side in (6.12) for these values of x. It only remains to prove for
our assumption that ∆(x)/xs+1 is Lebesgue integrable on a finite interval
(1, x0) for a constant x0 > 1 and all s ∈ C with <s > 1.

According to Lemma 5.3 we will choose x0 with 1 < x0 < e sufficiently small
such that we can find constants c1, c2 > 0 with∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤1/ log x

1

|=ρ|
≤ c1

(
log

(
1

log x

))2

∀x ∈ (1, x0) , (6.13)
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∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|>1/ log x

1

|=ρ|2
≤ c2 (log x) log

(
1

log x

)
∀x ∈ (1, x0) . (6.14)

Then we define the functions ∆1,∆2 : (1, x0)→ R by

∆1(x) := log x

∞∫
0

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤1/ log x

xρ e−u du

(ρ (log x)− u)2
, (6.15)

∆2(x) := log x

∞∫
0

∑
ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|>1/ log x

xρ e−u du

(ρ (log x)− u)2
. (6.16)

Now we use again Theorem 4.5(b) in order to conclude for all x ∈ (1, x0)

|∆1(x)| ≤
∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤1/ log x

{
log x |ϕρ(x)|+ x<ρ

|ρ|

}

≤
∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|≤1/ log x

{
log x

x<ρ

|(log x)=ρ|
+
x<ρ

|ρ|

}

≤ 2 c1x

(
log

(
1

log x

))2

. (6.17)

It follows that ∆1(x)/xs+1 is Lebesgue integrable on (1, x0), and in the same
way we also conclude that ∆2(x)/xs+1 is Lebesgue integrable on (1, x0),

|∆2(x)| ≤ log x
∑

ρ : ζ(ρ)=0
0<<ρ<1
|=ρ|>1/ log x

x<ρ

|(log x)=ρ|2
≤ c2 x log

(
1

log x

)
. (6.18)

Since ∆(x) = ∆1(x)+∆2(x) for all x ∈ (1, x0), we have established Riemann’s
prime number formula (6.12).

Formula (6.12) is formulated in a wrong way in the literature, where the
expressions Ei(ρ log x) are replaced by Li(xρ). For real β > 0 we have indeed
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that Ei(β log x) = Li(xβ). The expression Ei(β log x) is analytic with respect
to β in the half plane <β > 0, but not so Li(xβ), x > 1 a fixed parameter.
This is shown in the following two figures, where the section

S := {β =
1

2
+ it | − 10 ≤ t ≤ 10 }

of the critical line is mapped by Ei(β log x) as well as by Li(xβ) for x := 1000.

−10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Ei(β log x) , x=1000, β = 1/2+it, −10 <= t <= +10

Re

Im

Figure 1: The correct Ei-curve

−6 −4 −2 0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

Li(x
β
) , x=1000, β = 1/2+it, −10 <= t <= +10

Re

Im

Figure 2: The incorrect Li-curve

The Ei-curve in Figure 1 indicates the correct convergence to the limits ±iπ.
On the other hand, the Li-curve in Figure 2 has a jump at its boundary
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points when xβ crosses the negative real axis for =β = ± (2k+1)π
log x

and an

integer number k ∈ Z, and xβ describes a circle with radius
√
x. This short-

coming is independent on the branch of the logarithm, and we conclude that
the analytic continuation principle cannot be applied here.

This may be disregarded for the following reasons. First of all numerical
calculations of π∗(x) are performed due to the correct expression in (6.12)
or due to correct approximations of (6.12). For numerical aspects of explicit
prime number formulas and their relations to π(x) and π∗(x) we also refer to
the book of Riesel [12] as well as to Lagarias, Miller, Odlyzko [9]. A second
reason may be that Riemann’s formulas for π∗(x) or π(x) are often neglected
nowadays since they are equivalent to the simplier von Mangoldt formula for
ψ(x). We have used Hadamards theorem for entire functions, Theorem 5.2
for the disribution of the zeros of ξ(s) and von Mangoldt’s formula for ψ(x),
which are derived in the textbooks of Edwards [6] and Ingham [7].
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