

Übungsblatt 7

Abgabe: Donnerstag, 29.11.2018 vor der Vorlesung.

Bitte lösen Sie die Aufgaben auf verschiedenen Blättern und schreiben Sie auf jedes Blatt Ihren Namen, Matrikelnummer und Ihren gewählten Übungstermin.

Aufgabe 7.1

Lösen Sie folgende lineare Gleichungssysteme über $\mathbb{Z}/11\mathbb{Z}$:

a) b)
$$x_2 + 2x_3 + 3x_4 = 0 -6x_1 + 6x_2 + 2x_3 - 2x_4 = 2$$
$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0 -9x_1 + 8x_2 + 3x_3 - 2x_4 = 3$$
$$2x_1 + 3x_2 + 4x_3 + 5x_4 = 0 -3x_1 + 2x_2 + x_3 = 1$$
$$3x_1 + 4x_2 + 5x_3 + 6x_4 = 0 -7x_1 + 8x_2 + 6x_3 - 7x_4 = 6$$

Aufgabe 7.2

Bestimmen Sie, für welche $t \in \mathbb{R}$ das lineare Gleichungssystem mit folgender erweiterter Koeffizientenmatrix lösbar ist und geben Sie gegebenenfalls die Lösung an.

$$\begin{pmatrix} 2 & 4 & 2 & | & 12t \\ 2 & 12 & 7 & | & 12t + 7 \\ 1 & 10 & 6 & | & 7t + 8 \end{pmatrix}$$

Aufgabe 7.3

Lösen Sie das folgende lineare Gleichungssystem auf einem Taschenrechner mit einer Rechengenauigkeit von n Stellen hinter dem Komma (Abschneiden weiterer Stellen ohne Rundung!) für $\varepsilon=10^{-k}$ für größer werdendes $k\leq n$, und zwar einmal mit dem Pivot ε und einmal mit dem "maximalen Zeilenpivot" 1 der ersten Spalte.

$$x + y = 2,$$

$$\varepsilon x + y = 1.$$

Erklären Sie die beobachteten Effekte.

(Bitte umblättern!)

Aufgabe 7.4

Beweisen Sie Lemma 1.4.9 aus der Vorlesung:

Sei V ein Vektorraum, I eine beliebige Indexmenge, und für jedes $i \in I$ sei ein Untervektorraum W_i gegeben. Dann ist der Durchschnitt

$$W:=\bigcap_{i\in I}W_i\subset V$$

wieder ein Untervektorraum.

Aufgabe 7.5

Sei K ein Körper, sei V ein K-Vektorraum und sei U ein K-Untervektorraum von V.

- a) Zeigen Sie, dass auf V durch $v \sim w : \iff v w \in U$ eine Äquivalenzrelation gegeben ist. Für den Quotienten V/\sim schreiben wir V/U.
- b) Zeigen Sie, dass V/U mit den induzierten Verknüpfungen

$$\lambda \overline{v} := \overline{\lambda v}$$

für $\lambda \in K$ und $v \in V$ sowie

$$\overline{v} + \overline{w} := \overline{v + w}$$

für $v, w \in V$ ein K-Vektorraum ist.

Hinweis: Zeigen Sie insbesondere, dass diese Verknüpfungen wohldefiniert sind.

c) Sei $x \in U \setminus \{0\}$ und $y \in V \setminus U$. Zeigen Sie, dass (x, y) linear unabhängig ist.