Prof. Dr. Miles Simon

Prof. Dr. Miles Simon

Institut für Analysis und Numerik (IAN)
Gebäude 02, Universitätsplatz 2, 39106 Magdeburg, G02-19a
Sprechzeiten: nach Vereinbarung
Start

Forschungsinteressen

  • Ricci flow, singular metric spaces, mean curvature flow, singularities of Ricci and mean-curvature flow, geometric flows, geometric flows with surgery, parabolic and elliptic differential equations, global geometry, compactness theorems in geometry.

 

 

Lebenslauf

Honours Year (Undergraduate) :


Dissertation:

  • A class of manifolds that pinch when evolved by Ricci flow, (1998)


Habilitation:

  • Selected chapters from my Habilitation thesis   pdf "Ricci flow of almost non-negatively curved three manifolds",Universität Freiburg, Deutschland, Nov. 2006
Lehre

laufende Veranstaltungen

SoSe 2020 Analysis II
SoSe 2020 Mathematik 2a für Ing. (Stg A)

bisherige Veranstaltungen

WiSe 2019/2020 Analysis I
WiSe 2019/2020 Mathematik 1 für Ingenieure (Stg A)
WiSe 2019/2020 Differentialgeometrie 'reading course'
SoSe 2019 Analysis II für AS, LA, MaIng und PH
SoSe 2019 Proseminar Differentialgeometrie
SoSe 2018 Analysis II
SoiSe 2018 Geometrische Evolutionsgleichungen II
SoSe 2018 Seminar über partielle Differentialgleichungen
WiSe 2017/2018 Analysis I
WiSe 2017/2018 Geometrische Evolutionsgleichungen
SoSe 2017 Differentialgeometrie II
WiSe 2016/2017 Differentialgeometrie I
WiSe 2016/2017 Mathematik III für Ingenieure
SoSe 2016 Geometrische Evolutionsgleichungen II
SoSe 2016 Mathematik II für Ingenieure
WiSe 2015/2016 Analysis III 
WiSe 2015/2016  Geometrische Evolutionsgleichungen 
WiSe 2015/2016  Mathematik I für Ingenieure 
SoSe 2015 Analysis II 
SoSe 2015  Differentialgeometrie II 
SoSe 2015  Seminar zur Differentialgeometrie 
WiSe 2014/2015 Differentialgeometrie I
WiSe 2014/2015 Analysis I
WiSe 2013/2014 Analysis III
WiSe 2013/2014 Mathematics for Businessso
SoSe 2013 Seminar Analysis auf Mannigfaltigkeiten 
SoSe 2013 Analysis II
SoSe 2013 Proseminar Fourierreihen und Fouriertransformation
WiSe 2012/2013 Analysis I
WiSe 2012/2013 Mathematics for Business
SoSe 2012 Geometrische Evolutionsgleichungen II
SoSe 2012 Seminar Analysis
SoSe 2012 Seminar Geometrische Evolutionsgleichungen
WiSe 2011/2012 Geometrische Evolutionsgleichungen
WiSe 2011/2012 Mathematik III für Ingenieure
WiSe 2011/2012 Seminar Geometrische Evolutionsgleichungen
SoSe 2011 Partielle Differentialgleichungen II
Team
Seminar
Publikationen

2017

Simon, M.:
Ricci flow of Regions with Curvature Bounded Below in Dimension Three,
J Geom Anal (2017). doi:10.1007/s12220-017-9793-4
Ricci flow of Regions with Curvature Bounded Below in Dimension Three

 

2016

Simon, M., Topping, P. :
Local control on the geometry in 3D Ricci flow, Arxiv Preprint (2016), arXiv:1611.06137
Local control on the geometry in 3D Ricci flow

 

Boehm, C., Lafuente, R., Simon, M. :
Optimal curvature estimates for homogeneous Ricci flows, Arxiv Preprint (2016), arXiv:1604.02625
Optimal curvature estimates for homogeneous Ricci flows

 

2015

Simon, Miles :
Extending four dimensional Ricci flows with bounded scalar curvature, Arxiv Preprint (2015), arXiv:1504.02910
Extending four dimensional Ricci flows with bounded scalar curvature

 

Simon, Miles :
Some integral curvature estimates for the Ricci flow in four dimensions , Arxiv Preprint (2015), arXiv:1504.02623
Some integral curvature estimates for the Ricci flow in four dimensions

 

2014

Simon, Miles and Wheeler, Glen :
Some local estimates and a uniqueness result for the entire biharmonic heat equation , Advances in Calculus of Variations, DOI: 10.1515/acv-2014-0027, December 2014
Some local estimates and a uniqueness result for the entire biharmonic heat equation

 

2013

Simon, Miles :
Local smoothing results for the Ricci flow in dimensions two and three. accepted March 2013, by the journal "Geometry and topology"
Local smoothing results for the Ricci flow in dimensions two and three

 

Schulze, Felix; Simon, Miles :
Expanding solitons with non-negative curvature operator coming out of cones Mathematische Zeitschrift, DOI 10.1007/s00209-013-1150-0,Accepted: 5 February 2013
Expanding solitons with non-negative curvature operator coming out of cones

 

2012

Simon, Miles :
Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below. Journal fuer die reine und angewandte Mathematik (Crelle), DOI: 10.1515/CRELLE.2011.088, January 2012
Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below

 

2008

Simon, Miles :
Local results for flows whose speed or height satisfies a bound of the form $\frac c t$. International Mathematics Research Notices (2008) Vol. 2008 : article ID rnn097, 14 pages, (2008)
Local results for flows whose speed or height satisfies a bound of the form $\frac c t$

 

Schnuerer, Oliver, Schulze, Felix, Simon, Miles :
Stability of Euclidean space under Ricci flow, Communictions in Geom. and Ana., Volume 16, Number 1 (2008).
Stability of Euclidean space Ricci flow

 

Simon, Miles :
Local results for flows whose speed or height satisfies a bound of the form $\frac c t$. International Mathematics Research Notices (2008) Vol. 2008 : article ID rnn097, 14 pages, (2008)
Local results for flows whose speed or height satisfies a bound of the form $\frac c t$

 

Schnuerer, Oliver, Schulze, Felix, Simon, Miles :
Stability of Euclidean space Ricci flow, Communictions in Geom. and Ana., Volume 16, Number 1 (2008).
Stability of Euclidean space Ricci flow

 

2007

Simon, Miles :
Ricci flow of almost non-negatively curved three manifolds, accepted 2007: Journal fuer die reine und angewandte Mathematik.
Ricci flow of almost non-negatively curved three manifolds

 

Simon, Miles :
Ricci flow of almost non-negatively curved three manifolds, accepted 2007: Journal fuer die reine und angewandte Mathematik.
Ricci flow of almost non-negatively curved three manifolds

 

 

2004

Simon, Miles :
Deforming Lipschitz metrics into smooth metrics while keeping their curvature operator non-negative, Geometric Evolution Equations, Hsinchu, Taiwan, July 15- August 14, 2002, edited by Ben Chow, Sun-Chin Chu, Chang-Shou Lin, Shu-Cheng Chang American Mathematical Society, (2004)
Deforming Lipschitz metrics into smooth metrics while keeping their curvature operator non-negative

 

2002

Simon, Miles :
Deformation of C0 Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom. 10 (2002), no. 5, 1033-1074.
Deformation of C0 Riemannian metrics in the direction of their Ricci curvature (with corrections) &

 

Simon, Miles :
Some corrections to "C0 Riemannian metrics in the direction of their Ricci curvature":
PDF

 

2000

Simon, Miles:
A class of Riemannian manifolds which pinch when evolved by Ricci flow, Manuscripta Mathematica, 101, (2000), no.1
A class of Riemannian manifolds which pinch when evolved by Ricci flow,

Letzte Änderung: 07.07.2020 - Ansprechpartner: Prof. Dr. Miles Simon