Prof. Dr. Klaus Deckelnick

Hochschullehrer/-in

Prof. Dr. Klaus Deckelnick

Institut für Analysis und Numerik (IAN)
Fakultät für Mathematik (FMA)
Gebäude 02, Universitätsplatz 2, 39106 Magdeburg, G02-16a
Start
Lebenslauf

1988

Diplom in Mathematik, Universität Bonn

1990

Promotion an der Universität Bonn bei Prof. Dr. Dziuk

1996

Habilitation an der Universität Freiburg

1998-2002

Lecturer, später Reader an der University of Sussex

2002

Professor (C3)  an der Otto-von-Guericke-Universität Magdeburg

 

 

 

 

 

 

Lehre

laufende Veranstaltungen

SoSe 2020 Analysis II für AS, LA, MaIng und PH
SoSe 2020  Funktionentheorie 

bisherige Veranstaltungen

WiSe 2019/2020 Analysis I für AS, BB, LA, MathIng und Physik
WiSe 2019/2020 Anaylsis III

 

Publikationen

Recent work

  • K. Deckelnick, M. Doemeland, H.-Ch. Grunau:
    Boundary value problems for the Helfrich functional for surfaces of revolution.
    Preprint, Universität Magdeburg, 29 pp. (2020).
    arXiv:2003.10853

  • J.W. Barrett, K. Deckelnick, V. Styles:
    A practical phase field method for an elliptic surface PDE.
    Preprint, Universität Magdeburg, 24 pp. (2020).
    arXiv:2002.07504

  • A. Ali, K. Deckelnick, M. Hinze:
    Sufficient conditions for unique global solutions in optimal control of semilinear equations with C1-nonlinearity.
    Preprint, Universität Magdeburg, 18 pp. (2019).
    arXiv:1902.09639

 

Academic Journal Papers

  • J.W. Barrett, K. Deckelnick, R. Nürnberg:
    A finite element error analysis for axisymmetric mean curvature flow.
    Preprint, Universität Magdeburg, 20 pp. (2019).
    arXiv:1911.05398, to appear in IMA Journal of Numerical Analysis.

  • A. Ali, K. Deckelnick, M. Hinze:
    Global minima for optimal control of the obstacle problem.
    Preprint No. 5, Universität Magdeburg, 22 pp. (2018).
    arXiv:1810.08556, to appear in ESAIM: COCV

  • K. Deckelnick, C.M. Elliott, T.-H. Miura, V. Styles:
    Hamilton-Jacobi equations on an evolving surface.
    Math. Comp. 88, (2019), 2635-2664.
    Copyright: American Mathematical Society AMS. The orginal article is available on http://www.ams.org/

  • K. Deckelnick, V. Styles:
    Stability and error analysis for a diffuse interface approach to an advection-diffusion equation on a moving surface.
    Numer. Math. 139, No. 3, (2018), 709-741.

    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com

  • A. Dall'Acqua, K. Deckelnick:
    An obstacle problem for elastic graphs.
    SIAM J. Math. Anal. 50, No. 1, (2018), 119-137.
    Copyright: SIAM. The original article is available on http://epubs.siam.org/

  • A. Ali, K. Deckelnick, M. Hinze:
    Error analysis for global minima of semilinear optimal control problems.
    Mathematical Control and Related Fields (MCRF) 8, No. 1, (2018), 195-215.
    Copyright: AIMS. The original article is available on http://aimsciences.org/

  • K. Deckelnick, H.-Ch. Grunau, M. Röger:
    Minimising a relaxed Willmore functional for graphs subject to boundary conditions.
    Interfaces and Free Boundaries 19, (2017), 109-140.
    Copyright: EMS - European Mathematical Society Publishing House.
    The original article is available on https://www.ems-ph.org/

  • J.W. Barrett, K. Deckelnick, V. Styles:
    Numerical analysis for a system coupling curve evolution to reaction-diffusion on the curve.
    SIAM J. Numer. Anal. 55, No. 2, (2017), 1080-1100.

    Copyright: SIAM. The original article is available on http://epubs.siam.org/

  • K. Deckelnick, M. Hinze, T. Jordan:
    An optimal shape design problem for plates.
    SIAM J. Numer. Anal. 55, No. 1 (2017), 109-130.
    Copyright: SIAM. The original article is available on http://epubs.siam.org/

  • A. Ali, K. Deckelnick, M. Hinze:
    Global minima for semilinear optimal control problems.
    Comput. Optim. Appl. 65, (2016), 261-288.
    Copyright: Springer-Verlag. The original article is available on http://link.springer.com/

  • K. Deckelnick, C.M. Elliott, V. Styles:
    Double obstacle phase field approach to an inverse problem for a discontinuous diffusion coefficient.
    Inverse Problems 32 045008 (2016).
    Copyright: Inverse Problems. The orginal article is available on http://iopscience.iop.org

  • K. Deckelnick, J. Katz, F. Schieweck:
    A C1-finite element method for the Willmore flow of two-dimensional graphs.
    Math. Comp. 84, (2015), 2617-2643.
    Copyright: American Mathematical Society AMS. The orginal article is available on http://www.ams.org/

  • K. Deckelnick, C.M. Elliott, T. Ranner:
    Unfitted finite element methods using bulk meshes for surface partial differential equations.
    SIAM J. Numer. Anal. 52, No.4 (2014), 2137-2162.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • A. Dall'Acqua, K. Deckelnick, G. Wheeler:
    Unstable Willmore surfaces of revolution subject to Navier boundary conditions.
    Calc. Var. Partial Differential Equations 48, (2013), 293-313.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com

  • K. Deckelnick, M. Hinze:
    Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs.
    Inverse Problems 28 115015 (2012).
    Copyright: Inverse Problems. The orginal article is available on http://iopscience.iop.org

  • J. W. Barrett, K. Deckelnick:
    Existence and Approximation of a Nonlinear Degenerate Parabolic System Modelling Acid-Mediated Tumour Invasion.
    Interfaces and Free Boundaries 14 (2012), 343-363.
    Copyright: EMS - European Mathematical Society Publishing House. The original article is available on http://www.ems-ph.org/

  • K. Deckelnick, M. Hinze:
    A note on the approximation of elliptic control problems with bang-bang controls.
    Comput. Optim. Appl. 51, No. 2 (2012), 931-939.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com

  • K. Deckelnick, M. Hinze:
    Identification of matrix parameters in elliptic PDEs.
    Control Cybernet. 40, No. 4 (2011), 957-969.
    Copyright: Control Cybernet. The orginal article is available on http://control.ibspan.

  • K. Deckelnick, C.M. Elliott, V. Styles:
    Numerical analysis of an inverse problem for the eikonal equation.
    Numer. Math. 119, No. 2 (2011), 245-269.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com

  • K. Deckelnick, M. Hinze:
    Variational discretization of parabolic control problems in the presence of pointwise state constraints.
    J. Comput. Math. 29, No. 1 (2011), 1-15.
    Copyright: Journal of Computational (JCM). The orginal article is available on http://www.global-sci.org/

  • K. Deckelnick, F. Schieweck:
    Error analysis for the approximation of axisymmetric Willmore flow by C1-elements.
    Interfaces and Free Boundaries 12, No. 4 (2010), 551-574.
    Copyright: EMS - European Mathematical Society Publishing House.
    The original article is available on https://www.ems-ph.org/

  • K. Deckelnick, G. Dziuk, C.M. Elliott, C.-J. Heine:
    An h-narrow band finite element method for elliptic equations on implicit surfaces.
    IMA Journal of Numerical Analysis 30 (2010), 351-376.
    Copyright: Journal of Numerical Analysis (IMA). The orginal article is available on https://academic.oup.com/

  • K. Deckelnick, A. Günther, M. Hinze:
    Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and threedimensional curved domains.
    SIAM J. Control Optim. 48, No.4 (2009), 2798-2819.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • K. Deckelnick, H.-Ch. Grunau:
    A Navier boundary value problem for two-dimensional Willmore surfaces of revolution.
    Analysis 29, No. 3 (2009), 229-258.
    Copyright: de Gruyter. The original article is available on http://www.degruyter.com/

  • K. Deckelnick, C.M. Elliott, V. Styles:
    Optimal control of the propagation of a graph in inhomogeneous media.
    SIAM J. Control Optim. 48, No.3 (2009), 1335-1352.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • K. Deckelnick, G. Dziuk:
    Error analysis for the elastic flow of parametrized curves.
    Math. Comp. 78 (2009), 645-671.
    Copyright: American Mathematical Society AMS. The orginal article is available on http://www.ams.org/

  • K. Deckelnick, H.-Ch. Grunau:
    Stability and symmetry in the Navier problem for the one-dimensional Willmore equation.
    SIAM J. Math. Anal. 40 (2009), 2055-2076.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • K. Deckelnick, A. Günther, M. Hinze:
    Finite element approximation of elliptic control problems with constraints on the gradient.
    Numer. Math. 111 (2009), 335-350.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com/

  • A. Dall'Acqua, K. Deckelnick, H.-Ch. Grunau:
    Classical solutions to the Dirichlet problem for Willmore surfaces of revolution.
    Adv. Calc. Var. 1 (2008), 379-397.
    Copyright: de Gruyter. The original article is available on http://www.degruyter.com/

  • K. Deckelnick, M. Hinze:
    Convergence of a finite element approximation to a state constrained elliptic control problem.
    SIAM J. Numer. Anal. 45, No. 5 (2007), 1937-1953.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • J. W. Barrett, K. Deckelnick:
    Existence, uniqueness and approximation of a doubly-degenerate nonlinear parabolic system.
    Math. Models Methods Appl. Sci. 17, No. 7 (2007), 1095-1127.
    Copyright: World Scientific. The original article is available on http://www.degruyter.com/

  • K. Deckelnick, H.-Ch. Grunau:
    Boundary value problems for the one-dimensional Willmore equation.
    Calc. Var. Partial Differential Equations 30, No. 3 (2007), 293-314.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com/

  • K. Deckelnick, C.M. Elliott:
    Propagation of graphs in two-dimensional inhomogeneous media.
    Applied Numerical Mathematics 56 (2006), 1163-1178.
    Copyright: Elsevier. The orginal article is available on http://www.sciencedirect.com/

  • K. Deckelnick, G. Dziuk:
    Error analysis of a finite element method for the Willmore flow of graphs.
    Interfaces and Free Boundaries 8 (2006), 21-46.
    Copyright: EMS - European Mathematical Society Publishing House.
    The orginal article is available on https://www.ems-ph.org/
    Correction

  • K. Deckelnick, G. Dziuk, C.M. Elliott:
    Fully discrete finite element approximation for anisotropic surface diffusion of graphs.
    SIAM J. Numer. Anal. 43 (2005), 1112-1138.
    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • K. Deckelnick, G. Dziuk, C. M. Elliott:
    Computation of geometric partial differential equations and mean curvature flow
    Acta Numerica 14, 139-232 (2005).

    Copyright: Cambridge University Press. The orginal article is available on https://www.cambridge.org/

  • K. Deckelnick, C.M. Elliott:
    Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities.
    Interfaces and Free Boundaries 6 (2004), 329-349.
    Copyright: Copyright: EMS - European Mathematical Society Publishing House.
    The orginal article is available on https://www.ems-ph.org/

  • K. Deckelnick, M. Hinze:
    Semidiscretization and error estimates for distributed control of the instationary Navier Stokes equations.
    Numer. Math. 97 (2004), 297-320.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com/

  • K. Deckelnick, G. Dziuk, C.M. Elliott:
    Error analysis of a semidiscrete numerical scheme for diffusion in axially symmetric surfaces.
    SIAM J. Numer. Anal. 41 (2003), 2161-2179.

    Copyright: SIAM. The orginal article is available on http://epubs.siam.org/

  • K. Deckelnick, C.M. Elliott, V. Styles:
    Analysis and computations for a model of quasi-static deformation of a thinning sheet.
    Euro. Jnl. of Applied Mathematics 13 (2002), 403-429.
    Copyright: Cambridge University Press. The orginal article is available on https://www.cambridge.org/

  • K. Deckelnick, G. Dziuk:
    A fully discrete numerical scheme for weighted mean curvature flow.
    Numer. Math. 91 (2002), 423-452.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com/

  • K. Deckelnick, C.M. Elliott, V. Styles:
    Numerical diffusion induced grain boundary motion.
    Interfaces and Free Boundaries 3 (2001), 393-414.
    Copyright: EMS - European Mathematical Society Publishing House.
    The orginal article is available on https://www.ems-ph.org/

  • K. Deckelnick, C.M. Elliott:
    An existence and uniqueness result for a phase-field model of diffusion induced grain boundary motion.
    Proc. R. Soc. Edinb. 131A (2001), 1323-1344.
    Copyright: Cambridge University Press. The orginal article is available on https://www.cambridge.org/

  • K. Deckelnick, G. Dziuk:
    Error estimates for a semi implicit fully discrete finite element scheme for the mean curvature flow of graphs.
    Interfaces and Free Boundaries 2 (2000), 341-359.
    Copyright: EMS - European Mathematical Society Publishing House.

    The orginal article is available on https://www.ems-ph.org/

  • K. Deckelnick, K.G. Siebert:
    W^{1,\infty}-convergence of the discrete free boundary for obstacle problems.
    IMA Journal of Numerical Analysis 20 (2000), 481-498.
    Copyright: Oxford Academic.
    The orginal article is available on https://academic.oup.com/

  • K. Deckelnick:
    Error analysis for a difference scheme approximating mean curvature flow.
    Interfaces and Free Boundaries 2 (2000), 117-142.
    Copyright: EMS - European Mathematical Society Publishing House.
    The orginal article is available on https://www.ems-ph.org/

  • K. Deckelnick, G. Dziuk:
    Discrete anisotropic curvature flow of graphs.
    Math. Modelling Numer. Anal. 33 (1999), 1203-1222.
    Copyright: EDP Sciences. The orginal article is available on https://www.esaim-m2an.org/

  • E. Bänsch, K. Deckelnick:
    Optimal error estimates for the Stokes equations with slip-boundary condition.
    Math. Modelling Numer. Anal. 33 (1999), 923-938.
    Copyright: EDP Sciences. The orginal article is available on https://www.esaim-m2an.org/

  • K. Deckelnick, C.M. Elliott:
    Local and global existence results for anisotropic Hele-Shaw flows.
    Proc. R. Soc. Edinb. 129A (1999), 265-294.

    Copyright: Cambridge University Press. The orginal article is available on https://www.cambridge.org/

  • K. Deckelnick:
    Partial regularity for weak solutions of the curve shortening flow.
    Manuscripta math. 98 (1998), 265-274.
    Copyright: Springer-Verlag. The orginal article is available on http://link.springer.com/

  • K. Deckelnick, C.M. Elliott:
    Finite element error bounds for curve shrinking with prescribed normal contact to a fixed boundary.
    IMA Journal of Numerical Analysis 18 (1998), 635-654.
    Copyright: Oxford Academic. The orginal article is available on https://academic.oup.com/

  • K. Deckelnick, C.M. Elliott, G. Richardson:
    Long time asymptotics for forced curvature flow with applications to the motion of a superconducting vortex.
    Nonlinearity 10 (1997), 655-678.
    Copyright: IOP Science. The orginal article is available on http://iopscience.iop.org/

  • K. Deckelnick:
    Weak solutions of the curve shortening flow.
    Calc. Var. Partial Differential Equations 5 (1997), 489-510.
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  • K. Deckelnick, G. Dziuk:
    Convergence of a finite element method for non-parametric mean curvature flow.
    Numer. Math. 72 (1995), 197-222.
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  • K. Deckelnick:
    Parametric mean curvature evolution with a Dirichlet boundary condition.
    J. reine angew. Math. 459 (1994), 37-60.
    Copyright: Journal für die reine angewandte Mathematik. The orginal article is available on https://www.degruyter.com/

  • K. Deckelnick:
    L2-decay for the compressible Navier-Stokes equations in unbounded domains.
    Commun. in Partial Differential Equations 18 (1993), 1445-1476.
    Copyright: Taylor & Francis online. The orginal article is available on http://www.tandfonline.com/

  • K. Deckelnick:
    Decay estimates for the compressible Navier-Stokes equations in unbounded domains.
    Math. Z. 209 (1992), 115-130.
    Copyright: Springer-Verlag. The orginal article is available on http://www.digizeitschriften.de/

 

Articles in Conference Proceedings and Collections

  • K. Deckelnick, M. Hinze:
    A-priori error bounds for finite element approximation of elliptic optimal control problems with gradient constraints.
    in: Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S.: Trends in PDE Constrained Optimization, Springer International Publishing, International Series of Numerical Mathematics Volume 165:365-382 (2014).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  • K. Deckelnick, A. Günther, M. Hinze:
    A priori estimates for optimal Dirichlet boundary control problems.
    Proc. Appl. Math. Mech., 9, 611-612, (2009).
    Copyright: PAMM. The orginal article is available on http://onlinelibrary.wiley.com/

  •  K. Deckelnick, A. Günther, M. Hinze:
    Discrete concepts for elliptic optimal control problems with constraints on the gradient of the state.
    Proc. Appl. Math. Mech., 8(1), 10863-10864, (2008).
    Copyright: PAMM. The orginal article is available on http://onlinelibrary.wiley.com/

  •  K. Deckelnick, M. Hinze:
    Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations.
    K. Kunisch, G. Of, O. Steinbach (eds.), Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007, 597-604, Springer (2008).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, C.M. Elliott:
    Uniqueness and error bounds for eikonal equations with discontinuities.
    H. Ishii, Y. Giga, S. Koike (eds.), Viscosity Solutions of Differential Equations and Related Topics. Proceedings of a conference held at the Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, September 17-19, 2002. Kyoto: Kyoto Univ., Research Institute for Mathematical Sciences, RIMS K�ky�roku. 1323, 37-44 (2003).

  •  K. Deckelnick, G. Dziuk:
    Mean curvature flow and related topics
    J.F. Blowey, A.W. Craig, T. Shardlow (eds.), Frontiers in Numerical Analysis, Durham 2002, 63-108, Springer (2003).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, G. Dziuk:
    Numerical approximation of mean curvature flow of graphs and level sets.
    P. Colli, J.F. Rodrigues (eds.), Mathematical Aspects of Evolving Interfaces, Madeira, Funchal, Portugal, 2000. Lecture Notes in Mathematics, Vol. 1812, 53-87, Springer-Verlag Berlin Heidelberg (2003).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, G. Dziuk:
    A finite element level set method for anisotropic mean curvature flow with space dependent weight.
    S. Hildebrandt, H. Karcher (eds.), Geometric Analysis and Nonlinear Partial Differential Equations, 249-264, Springer-Verlag Berlin Heidelberg New York (2003).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, M. Hinze:
    Error estimates in space and time for tracking-type control of the instationary Stokes system.
    W. Desch, F. Kappel, K. Kunisch (eds.), Control and Estimation of Distributed Parameter Systems, International Conference in Maria Trost (Austria), July 15-21, 2001. International Series of Numerical Mathematics, Vol. 143, 87-103, Birkhäuser-Verlag (2002).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, M. Hinze:
    Optimal error estimates and computations for tracking-type control of the instationary Stokes system.
    M. Griebel, W. Hackbusch (eds.), Proceedings of the 18th GAMM-Seminar Leipzig: Multigrid and related methods for optimization problems, 63-75 (2002).

  •  K. Deckelnick:
    A phase-field model for diffusion-induced grain boundary motion.
    Casacuberta, Carles (ed.) et al., 3rd European congress of mathematics (ECM), Barcelona, Spain, July 10-14, 2000. Volume II. Basel: Birkhäuser. Prog. Math. 202, 255-262 (2001).
    Copyright: Springer-Verlag. The orginal article is available on https://link.springer.com/

  •  K. Deckelnick, G. Dziuk:
    Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow.
    M. Falcone, C. Makridakis (eds.), Numerical Methods for Viscosity Solutions and Applications, Series Adv. Math. Appl. Sciences 59, 77-93 (2001).

  •  K. Deckelnick, G. Dziuk:
    On the approximation of the curve shortening flow.
    C. Bandle, J. Bemelmans, M. Chipot, J. Saint Jean Paulin, I. Shafrir (eds.), Calculus of Variations,
    Applications and Computations. Pont-`a-Mousson, 1994. Pitman Research Notes in Mathematics Series, 100-108.

 

Preprints

  • K. Deckelnick, C.M. Elliott:
    Propagation of eikonal curvature fronts in two-dimensional inhomogeneous and striped media.
    Preprint Nr. 34/1997, Universität Freiburg, 18 pp. (1997).
    postscript.
  • K. Deckelnick:
    Global existence for the parametric mean curvature flow with a Dirichlet condition.
    Preprint Nr. 05/1995, Universität Freiburg, 20 pp. (1995).
    postscript.

  • K. Deckelnick:
    On the three-dimensional problem of capillary convection.
    Preprint no. 232, SFB 256, Bonn (1992).

  • K. Deckelnick:
    Decay estimates for the compressible Navier-Stokes equations in the half-space.
    Preprint no. 46, SFB 256, Bonn (1988).

 

Theses

    • K. Deckelnick:
      Schwache Lösungen für den Krümmungsfluss von Kurven.
      Habilitation thesis, Universität Freiburg, 80 pp. (1995).
    • K. Deckelnick:
      Das zeitasymptotische Verhalten von Lösungen der kompressiblen Navier-Stokes Gleichungen in unbeschränkten Gebieten.
      Doctoral thesis, Universität Bonn (1990).
    • K. Deckelnick:
      Stabilitätsaussagen für die Strömung zäher kompressibler Flüssigkeiten im Halbraum.

      Diploma thesis, Universität Bonn (1987).

Letzte Änderung: 23.07.2020 - Ansprechpartner: Webmaster